Data Administration in Information Systems

Database tuning

DATABASE TUNING

Principles, Experiments, and Troubleshooting Techniques

o
-
S

DENNIS SHASHA & PHILIPPE BONNET

FOREWORD BY JIM GRAY (MICROSOFT)

IST, MEIC/MECD/METI

Table of Contents

Foreword

Preface

Chapter 1: Basic Principles

Chapter 2: Tuning The Guts

Chapter 3: Index Tuning

Chapter 4: Tuning Relational Systems

Chapter 5: Communicating With The Qutside
Chapter 6: Case Studies From Wall Street
Chapter 7: Troubleshooting

Chapter 8: Tuning E-Commerce Applications
Chapter g: Data Warehouses: Techniques, Successes, and Mistakes
Chapter 10: Data Warehouse Tuning

Appendix A: Real-Time Databases

Appendix B: Transaction Chopping

Appendix C: Time Series, Especially For Finance
Appendix D: Understanding Access Plans
Appendix E: Configuration Parameters
Glossary

Index

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

What is Database Tuning?

e Activity of making a database application run faster

— Faster = higher throughput, or lower response time

— Avoiding transactions that create bottlenecks, or queries that run for
hours unnecessarily, is a must

— A 5% improvement is significant

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Why Database Tuning?

* Troubleshooting

— Help managers and users overcome difficulties with a given application
and database system

* (Capacity Sizing

— Help determine the right database system and hardware resources for
given application requirements

* Application Programming

— Help developers code their applications for performance

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Why is Database Tuning hard?

* The following query runs too slowly

GO

* Butwhy??...

IST, MEIC/MECD/METI

select *
from R
where R.a > 5;

(o

PARSER
OPTIMIZER
v
EXECUTION
SUBSYSTEM
DISK |le— | |, LOCKING
SYBSYSTEM / \ SUBSYSTEM
CACHE LOGGING
MANAGER SUBSYSTEM
\ 4 \ 4 4 VL
DISK/
MEMORY CPU - ONTROLLER NETWORK

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Database Tuning

* Second part for the course will address different tuning aspects,
building on previous knowledge
— Schema tuning
— Query tuning
— Index tuning
— Lock and log tuning

DATABASE TUNING

— Hardware and OS tuning

Principles, Experiments, and Troubleshooting Techniques

— Database monitoring

DENNIS SHASHA & PHILIPPE BONNET

» Y (MICROSOFT)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Tuning Principles

Think globally, fix locally

2. Partitioning breaks bottlenecks
— temporal and spatial

3. Start-up costs are high; running costs are low
Render unto server what is due unto server
5. Be prepared for trade-offs

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Think globally, fix locally

* Proper identification of problem; minimal intervention

 Understand the whole, including the application goals before
taking a set of queries and find the indexes that speed them up

* Example:

— High I/0, paging and processor utilization may be due to frequent table
scans instead of using an index, or due to log sharing a disk with some
frequently accessed data.

— Creating an index, or moving data files across different disks, may be
cheaper and more efficient than buying an extra hard drive.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Partitioning breaks bottlenecks

* Technique for reducing the load on a certain component of the
system, either by dividing the load over more resources or by
spreading the load over time

e Partitioning may not always solve bottleneck:
— First, try to speed up the component
— If it doesn't work, partition

* Example:

— Lock and resource contention among few long and many short
transactions that access the same data.

— Solution 1: run long transactions when there is little online transaction
activity (partitioning in time).

— Solution 2: allow long transactions (if read-only) to apply to out-of-date
data on a separate disk (partitioning in space).

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Start-up costs are high; running costs are low

* Obtain the effect you want with the fewest possible start-ups

 Examples:

— It is expensive to begin a read operation on a disk, but once it starts, disk
can deliver data at high speed.

* So, frequently scanned tables should be laid out consecutively on disk.

— Cost of parsing, semantic analysis, and optimizing the execution plan for
some queries is non-negligible.

* So, often executed queries should be compiled into the plan cache.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

10

Render unto server what is due unto server

* Important design question is the allocation of work between the
database system (server) and the application program (client)

 Depends on:

— Relative computing resources of client and server: if the server is
overloaded, tasks should be off-loaded to the clients

— When something can be done efficiently on the DB (e.g. table joins), do it
there before bringing out the data to the application

— When the database task interacts with the user, then the part that waits
for user input should be performed outside a transaction

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

11

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Be prepared for trade-offs

* Increasing speed of application requires combination of memory,
disk and computational resources

 Examples:

— Investing in RAM allows a system to increase its buffer size; this reduces
the number of disk accesses and increases the system’s speed.

— Adding an index makes a critical query run faster, but requires more
storage, more memory, and more disk accesses for insertions and updates.

— When separating long queries from online updates, it would be nice to
have a separate archival database for long queries; more performance, at
the cost of purchasing and maintaining a separate computer system.

12

Database Tuning

* Second part for the course will address different tuning aspects,
building on previous knowledge

— Schema tuning

Chapter 4

DATABASE TUNING

Principles, Experiments, and Troubleshooting Techniques

DENNIS SHASHA & PHILIPPE BONNET

» Y (MICROSOFT)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Tuning Schemas: Overview

Trade-offs between normalization / de-normalization
— Overview

— When to normalize / de-normalize

Vertical partitioning

— Which queries benefit from partitioning

Horizontal partitioning
Aggregate maintenance and materialized views

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

14

Database Schemas (recap)

 Arelation schema is a relation name and a set of attributes
R(a int, b varchar[20], ...)

 Arelation instance for R is a set of records over the attributes in
the schema for R

NAME ITEM PRICE QUANTITY SUPPLIERNAME YEAR
Bolt 4325 15 60 Standard Part 2001
Washer 5925 13 60 Standard Part 2002
Screw 6324 17 54 Standard Part 2003
Nut 3724 15 80 Metal Part 2001

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Some Schemas Better than Others

* Schemal (unnormalized)
OnOrderl(supplier_id, part_id, quantity, supplier_address)

 Schema2 (normalized)

OnOrder2(supplier_id, part_id, quantity)
Supplier(supplier _id, supplier _address)

100 000 orders
2 000 suppliers

supplier _id: 8-byte integer
supplier _address: 50 bytes

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

16

Some Schemas Better than Others

Schemal (unnormalized)
OnOrderl(supplier_id, part_id, quantity, supplier_address)

 Schema2 (normalized)

OnOrder2(supplier_id, part_id, quantity)
Supplier(supplier _id, supplier _address)

* Space
— Schema 2 saves space, we are not repeating the supplier_address

e Update anomalies (information preservation)

— Some supplier addresses might get lost with schema 1 if a supplier is
deleted once the order has been filled

e Performance trade-off

— In case of frequent accesses to supplier's address given an ordered part,
then schema 1 is good, specially if there are few updates

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 17

Functional Dependency

* Xis a set of attributes of relation R, and A is a single attribute of
relation R.

 Xdetermines A, i.e. functional dependency X — A holds for
relation R, iff:

— For any relation instance of R, whenever there are two records r and r’
with the same X values, they have the same A value as well

— This is trivial if A is part of X
— |t is non-trivial or interesting if A is not part of X

OnOrderl(supplier_id, part_id, quantity, supplier_address)

supplier_id — supplier_address is an interesting functional dependency

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 18

Key of a Relation

e Attributes X from R are a key of R if X determines every attribute
in R and no proper subset of X determines an attribute in R

— A key of a relation is a minimal set of attributes that determines all
attributes in the relation

OnOrderl(supplier_id, part_id, quantity, supplier_address)
= (supplier_id, part_id) is a key

= supplier_id is not a key, because it does not determine part_id

Supplier(supplier _id, supplier _address)
= supplier_idis a key

= (supplier_id, supplier _address) is not a key, because it is not a minimal set
of attributes that determines all attributes

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 19

Normalization

* Arelation R is normalized if every interesting functional
dependency X — A has the property that X is a key of R

Schemal (unnormalized)
OnOrderl(supplier_id, part_id, quantity, supplier_address)
Schema2 (normalized)

OnOrder2(supplier_id, part_id, quantity)
Supplier(supplier _id, supplier _address)

— OnOrder1 is not normalized, because the key is (supplier_id, part_id) but
supplier_id alone determines supplier _address

— OnOrder2 and Supplier are normalized

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

20

Example 1

* Suppose that a bank associates each customer with his or her
home branch. Each branch is in a specific legal jurisdiction.
— Is the relation R(customer, branch, jurisdiction) normalized?
 What are the functional dependencies?
= customer — branch

" branch — jurisdiction

 The key is customer, but a functional dependency exists where
customer is not involved.
— Ris not normalized.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

21

Example 2

e Suppose that a doctor can work in several hospitals and receives
a salary from each one.
— Is R(doctor, hospital, salary) normalized?

 What are the functional dependencies?

= doctor, hospital — salary

 The key is (doctor, hospital)
— Ris normalized.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

22

Example 3

 Same relation R(doctor, hospital, salary) as before, but we add
the doctor's primary home address.
— Is R(doctor, hospital, salary, primary_home_address) normalized?
 What are the functional dependencies?
= doctor, hospital — salary

= doctor — primary_home_address

* Not normalized because doctor (a subset of the key) determines
one attribute.

A normalized decomposition would be:

= RI1(doctor, hospital, salary)
= R2(doctor, primary_home_address)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

23

Tuning Normalization

Different normalization strategies may guide us to different sets
of normalized relations
— Which one to choose depends on the application's query patterns

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

24

Tuning Denormalization

 Denormalizing means sacrificing normalization for the sake of
performance:

— Denormalization speeds up performance when attributes from different
normalized relations are often accessed together

— Denormalization hurts performance for relations that are often updated

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

25

Denormalizing: Data
e Benchmark database

lineitem(L_ORDERKEY, L_PARTKEY, L _SUPPKEY, L_LINENUMBER,
L_QUANTITY, L_EXTENDEDPRICE, L_DISCOUNT, L_TAX,
L_RETURNFLAG, L_LINESTATUS, L_SHIPDATE,
L_COMMITDATE, L_RECEIPTDATE, L_SHIPINSTRUCT,
L_SHIPMODE, L_COMMENT)

supplier(S_SUPPKEY, S _NAME, S_ADDRESS, S NATIONKEY, S_PHONE,
S_ACCTBAL, S_COMMENT)

nation(N_NATIONKEY, N_NAME, N_REGIONKEY, N_COMMENT)

region(R_REGIONKEY, R_NAME, R_COMMENT)

600000 line items, 500 suppliers, 25 nations, 5 regions

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

26

Denormalizing: Denormalized Relation

 Query: find all line items whose supplier is in Europe

lineitemdenormalized(L_ORDERKEY, L _PARTKEY, L SUPPKEY,
L LINENUMBER, L QUANTITY, L EXTENDEDPRICE,
L DISCOUNT, L TAX, L _RETURNFLAG,
L LINESTATUS, L SHIPDATE, L _COMMITDATE,
L RECEIPTDATE, L_SHIPINSTRUCT, L _SHIPMODE,
L_COMMENT, L_REGIONNAME)

e 600000 line items

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

27

Queries on Normalized vs. Denormalized Schema

e Normalized:

select L ORDERKEY, L_PARTKEY, L _ SUPPKEY, L _ LINENUMBER, L QUANTITY,
L EXTENDEDPRICE, L DISCOUNT, L _TAX, L RETURNFLAG, L _LINESTATUS,
L SHIPDATE, L COMMITDATE, L _RECEIPTDATE, L_SHIPINSTRUCT,
L_SHIPMODE, L_COMMENT, R_NAME
from LINEITEM, REGION, SUPPLIER, NATION
where L _SUPPKEY = S _SUPPKEY
and S _NATIONKEY = N_NATIONKEY
and N _REGIONKEY = R_REGIONKEY
and R_NAME = 'Europe';

* Denormalized:
select L ORDERKEY, L_PARTKEY, L SUPPKEY, L _ LINENUMBER, L QUANTITY,
L EXTENDEDPRICE, L _DISCOUNT, L TAX, L _RETURNFLAG, L _LINESTATUS,
L SHIPDATE, L COMMITDATE, L RECEIPTDATE, L SHIPINSTRUCT,
L SHIPMODE, L COMMENT, L _REGIONNAME
from LINEITEMDENORMALIZED
where L_REGIONNAME = 'Europe';

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

28

Denormalization

e Benchmark database

— Query: find all line items whose supplier is in Europe
 With a normalized schema this query is a 4-way join

* If we denormalize and introduce the name of the region for each
line item we obtain a 30% throughput improvement

0.0020
F]
< 0.0015
g
5
=
=
= 0.0010
=
o,
=
on
=
o
2 0.0005
=
0 .

Normalized Denormalized

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Vertical Partitioning: Example

Three attributes: account_ID, balance, address

Functional dependencies:
" account_ID — balance
" account _ID — address

Two possible normalized schema designs:
(account ID, balance, address)
or
(account _ID, balance)
(account_ID, address)

 Which design is better?

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

30

Vertical Partitioning

* It depends on the query pattern. Consider:

— The address is used mainly by the application that sends a monthly
account statement

— The balance is updated or examined several times a day
 The second schema might be better because the relation
(account ID, balance) can be made smaller:

— More (account_ID, balance) pairs fit in memory, thus increasing the hit
ratio or cache efficiency

— A scan performs better because there are fewer pages

* Here, two relations are better than one, even though they
require more space

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 31

Vertical Partitioning

° R()_(, Y, Z) 0.020
= Xis an integer key
= Y, Zare large strings g o015
. L. ‘;’r 0.010
* Vertical partitioning =
. 2
Ri(X,Y) = 0.005
" RZ(X' Z)
0
No partitioning Vertical No partitioning Vertical
— XYz partitioning — XY partitioning
— XYz — XY

* As expected:

= Vertical partitioning exhibits poor performance when all attributes are
accessed

= Vertical partitioning provides a speed up if only two of the attributes are
accessed

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

32

Vertical Partitioning: Rule

* Asingle normalized relation XYZ is better than two normalized
relations XY and XZ for queries accessing X, Y, Z together

— Those queries can access the three attributes without requiring a join

 The two-relation design is better if:
— Accesses to X, Y and X, Z are separate most of the time
— Attributes Y or Z have large values

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

33

Vertical Antipartitioning: Example

e A financial market database holds the closing price for the last
3000 trading days, however the 10 most recent trading days are
especially important.

(bond_id, issue_date, maturity, ...)
(bond_id, date, price)
VS.
(bond_id, issue_date, maturity, price_today, price_yesterday, ...
..., price_10daysago)
(bond_id, date, price)

* Second schema stores redundant info, requires extra space

— Better for queries that need info about prices in the last 10 days, because
it avoids a joining with thousands of dates

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

34

Horizontal Partitioning

e Until now, we have seen examples of vertical partitioning

— Relation replaced by a collection of relations that are projections of the
original schema

 Sometimes, it may instead be useful to partition a relation by a
collection of relations that are selections
— Each new relation has the same schema, but a subset of the rows
— Collectively, all relations contain all rows of the original relation
* Modern database systems can implement horizontal partitioning
transparently to the user
— E.g. partition schemes and partition functions in SQL Server

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 35

Horizontal Partitioning (Cont.)

* In arelation R(ID, balance, address), suppose that accounts with
balance > 10000 are subject to different rules
— Queries on R will often contain the condition balance > 10000

* One way to deal with this is to build a clustered B* tree index on
the balance field of R

 Asecond approach is to replace R by two new relations, namely
LargeR and SmallR, with the same attributes

 The replacement can be masked by a view involving a UNION of
two selections, but queries with the condition value > 10000
must be asked to LargeR, for efficient execution

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

36

Aggregate Maintenance

* Inreporting applications, aggregates (sums, averages, etc.) are
often used

* For those queries it may be worthwhile to maintain special tables
that hold those aggregates in pre-computed form

* Those tables are known as materialized views

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

37

Example

 The accounting department of a convenience store chain issues
gueries every 20 minutes to obtain:
— The total dollar amount on order for a particular vendor
— The total dollar amount on order by a particular store

* Original Schema:
Orders(ordernum, itemnum, quantity, store, vendor)
Item(itemnum, price)
Store(store, name)

* The total dollar queries are expensive

— vendor selection on Orders, join with Item on itemnum, multiply
price*guantity, then sum

— similarly for store, possibly requiring join with Store if selection by name

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 38

Solution: Aggregation Maintenance

* Add the following materialized views:

= VendorTotal(vendor, amount), where amount is the dollar value of goods
on order to the vendor, with a clustered index on vendor.

= StoreTotal(store, amount), where amount is the dollar value of goods on
order by the store, with a clustered index on store.

* Each update to Orders should update to these two views
— materialized views take care of these updates implicitly
— can also be implemented with tables updated by triggers

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

39

Aggregate Maintenance

 SQL Server on Windows
1000 000 orders, 1 000 items
 Tables updated by triggers

* Insertions are 60% slower, queries are 20000% faster

IST, MEIC/MECD/METI

35,000
30,000
25,000
20,000
15,000
10,000

5,000

—5,000

Percentage of gain with aggregate maintenance

Insert Vendor total Store total

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

40

Materialized Views in Oracle

e Oracle supports materialized views (so does Microsoft SQL Server — see labs):
CREATE MATERIALIZED VIEW VendorOutstanding
BUILD IMMEDIATE
REFRESH COMPLETE
ENABLE QUERY REWRITE
AS
SELECT orders.vendor, sum(orders.quantity*item.price)
FROM orders, item
WHERE orders.itemnum = item.itemnum
GROUP BY orders.vendor;

* Some Options:
— BUILD immediate/deferred (when to populate the view)
— REFRESH complete/incremental (how to keep the view updated)
— ENABLE QUERY REWRITE (enable use for query optimization)

* Key characteristics:
— Transparent aggregate maintenance
— Transparent expansion performed by the optimizer based on cost
— Itis the optimizer and not the programmer that performs query rewriting

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Database Tuning

* Second part for the course will address different tuning aspects,
building on previous knowledge

— Query tuning
Chapter 4

DATABASE TUNING

Principles, Experiments, and Troubleshooting Techniques

DENNIS SHASHA & PHILIPPE BONNET

» Y (MICROSOFT)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

42

Query Tuning

SELECT s.RESTAURANT_NAME, t.TABLE_SEATING,
to_char(t.DATE_TIME, 'Dy, Mon FMDD') AS THEDATE,
to_char(t.DATE_TIME, '"HH:MI PM') AS THETIME,
to_char(t.DISCOUNT,'99') || '%' AS AMOUNTVALUE,
t.TABLE_ID, s.SUPPLIER_ID, t.DATE_TIME,
to_number(to_char(t.DATE_TIME, 'SSSSS')) AS SORTTIME

FROM TABLES_AVAILABLE t, SUPPLIER_INFO s,

(SELECT s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME,
max (t.DISCOUNT) AMOUNT, t.OFFER_TYPE

FROM TABLES_AVAILABLE t, SUPPLIER_INFO

WHERE t.SUPPLIER_ID = s.SUPPLIER_ID

and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') != TO_CHAR(sysdate,

Execution is too slow...
— How is this query executed?
— How to make it run faster?

"MM/DD/YYYY') OR

TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)

and t.NUM_OFFERS > ©

and t.DATE_TIME > SYSDATE

and s.CITY = 'SF'

and t.TABLE_SEATING = '2'

and t.DATE_TIME between sysdate and (sysdate + 7)

and to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 828600

and t.OFFER_TYPE = 'Discount’

GROUP BY s.SUPPLIER_ID, t.TABLE_SEATING, t.DATE_TIME, t.OFFER_TYPE) u

WHERE t.SUPPLIER_ID = s.SUPPLIER_ID
and u.SUPPLIER_ID = s.SUPPLIER_ID
and t.SUPPLIER_ID = u.SUPPLIER_ID
and t.TABLE_SEATING = u.TABLE_SEATING
and t.DATE_TIME = u.DATE_TIME
and t.DISCOUNT = u.AMOUNT
and t.OFFER_TYPE = u.OFFER_TYPE

and (TO_CHAR(t.DATE_TIME, 'MM/DD/YYYY') != TO_CHAR(sysdate,
TO_NUMBER(TO_CHAR(sysdate, 'SSSSS')) < s.NOTIFICATION_TIME - s.TZ_OFFSET)

and t.NUM_OFFERS > ©

and t.DATE_TIME > SYSDATE

and s.CITY = 'SF'

and t.TABLE_SEATING = '2°'

and t.DATE_TIME between sysdate and (sysdate + 7)

and to_number(to_char(t.DATE_TIME, 'SSSSS')) between 39600 and 82800

and t.OFFER_TYPE = 'Discount’
ORDER BY AMOUNTVALUE DESC, t.TABLE_SEATING ASC,
upper(s.RESTAURANT_NAME) ASC,
SORTTIME ASC, t.DATE_TIME ASC

IST, MEIC/MECD/METI

"MM/DD/YYYY') OR

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

43

Query Monitoring

 Two ways to identify a slow query:
— It issues far too many disk accesses, e.g., a query that scans an entire table

— lts query plan, i.e. the plan chosen by the optimizer to execute the query,
fails to use promising indexes

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

44

Query Rewriting

* The first tuning method to try is the one whose effects are purely
local

— Adding an index, changing the schema, modifying transactions have global
effects that are potentially harmful

— Query rewriting only impacts a particular query

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

45

Running Example

 Employee(ssnum, name, manager, dept, salary, numfriends)

— Clustered index on ssnum
— Non-clustered indexes (i) on name and (ii) on dept

e Student(ssnum, name, course, year)
— Clustered index on ssnum
— Non-clustered index on name

* Techdept(dept, manager, location)
— Clustered index on dept

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

46

Query Rewriting Techniques

* |Index usage

* Elimination of DISTINCT
* Nested queries

* Use of temporaries

* Join conditions

e Use of HAVING

* Use of views

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

47

Index Usage

* Many query optimizers will not use indexes in the presence of:

— Arithmetic expressions
WHERE salary/12 >= 4000;

— Substring / upper / lower expressions
SELECT * FROM Employee
WHERE SUBSTR(name, 1, 1) = 'G';

— Numerical comparisons of fields with different types

— Comparison with NULL

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

48

Eliminate Unneeded DISTINCTs

* Query: Find employees who work in the information systems
department. There should be no duplicates.

SELECT DISTINCT ssnum
FROM Employee
WHERE dept = 'Information Systems';

* DISTINCT is unnecessary, since ssnum is a key of employee so
certainly is a key of a subset of employee.

Employee(ssnum, name, manager, dept, salary, numfriends)

Student(ssnum, name, course, year)

Techdept(dept, manager, location)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

49

Eliminate Unneeded DISTINCTs (Cont.)

 Query: Find social security numbers of employees in tech
departments. There should be no duplicates.

SELECT DISTINCT ssnum
FROM Employee, Techdept
WHERE Employee.dept = Techdept.dept;

e |s DISTINCT needed?

Employee(ssnum, name, manager, dept, salary, numfriends)

Student(ssnum, name, course, year)

Techdept(dept, manager, location)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

50

DISTINCT Unnecessary

e Since dept is a key of the Techdept table, each employee record
will join with at most one record in Techdept.

e So, each employee record will be part of at most one record of
the join result.

 Because ssnum is a key for Employee, at most one record in
Employee will have a given ssnum value, so DISTINCT is
unnecessary.

SELECT DISTINCT ssnum
FROM Employee, Techdept
WHERE Employee.dept = Techdept.dept;

Employee(ssnum, name, manager, dept, salary, numfriends)

Student(ssnum, name, course, year)

Techdept(dept, manager, location)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

When DISTINCT is Required

* In general, DISTINCT is required when:
— The set of values or records returned should contain no duplicates

— The columns returned do not contain a key of the relation created by the
FROM and WHERE clauses

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

52

Reaching

* The relationship among DISTINCT, keys and joins can be
generalized:

— Call a table T privileged if the fields returned by the SELECT contain a key
of T

— Let R be an unprivileged table. Suppose that R is joined on equality by its
key field to some other table S, then we say R reaches S

— Now, define reaches to be transitive. So, if R1 reaches R2 and R2 reaches
R3 then say that R1 reaches R3

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

53

Reaching: Main Theorem

 There will be no duplicates among the records returned by a
selection, if one of the two following conditions hold:
— Every table mentioned in the FROM clause is privileged
— Every unprivileged table reaches at least one privileged table

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

54

Reaching: Proof Sketch

* If every relation is privileged then there are no duplicates

 Suppose some relation T is not privileged but reaches at least one
privileged one, say U. Then the join clauses linking T with U
ensure that each distinct combination of privileged records is
joined with at most one record of T.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

55

Reaching: Example 1

SELECT ssnum
FROM Employee, Techdept
WHERE Employee.manager = Techdept.manager;

e Returns duplicates

* The same Employee record may match several Techdept records
(because manager is not a key of Techdept), so the ssnum of that
employee record may appear several times

 The unprivileged relation Techdept does not reach the privileged
relation Employee

Employee(ssnum, name, manager, dept, salary, numfriends)
Student(ssnum, name, course, year)

Techdept(dept, manager, location)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

56

Reaching: Example 2

SELECT ssnum, Techdept.dept
FROM Employee, Techdept
WHERE Employee.manager = Techdept.manager;

 Does not return duplicates

* Each repetition of a given ssnum value would be accompanied by
a new Techdept.dept since Techdept.dept is a key of Techdept

* Both relations are privileged

Employee(ssnum, name, manager, dept, salary, numfriends)

Student(ssnum, name, course, year)

Techdept(dept, manager, location)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

57

Reaching: Example 3

SELECT Student.ssnum

FROM Student, Employee, Techdept

WHERE Student.ssnum = Employee.ssnum
AND Employee.dept = Techdept.dept;

* Does not return duplicates

e Studentis privileged
* Both Employee and Techdept reach Student

IST, MEIC/MECD/METI

Employee(ssnum, name, manager, dept, salary, numfriends)

Student(ssnum, name, course, year)

Techdept(dept, manager, location)

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

58

Types of Nested Queries

* Uncorrelated subqueries with aggregates in the nested query

SELECT ssnum

FROM Employee

WHERE salary > (SELECT avg(salary)
FROM Employee);

* Uncorrelated subqueries without aggregates in the nested query

SELECT ssnum

FROM Employee

WHERE dept IN (SELECT dept
FROM Techdept);

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

59

Types of Nested Queries (Cont.)
* Correlated subqueries with aggregates

SELECT ssnum
FROM Employee el
WHERE salary > (SELECT avg(e2.salary)
FROM Employee e2, Techdept
WHERE e2.dept = el.dept
AND e2.dept = Techdept.dept);

* Correlated subqueries without aggregates

SELECT ssnum
FROM Employee el
WHERE EXISTS (SELECT *
FROM Techdept t1
WHERE el.dept = tl.dept);

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

60

Rewriting of Uncorrelated Subqueries

1. Retain the SELECT clause from the outer block
2. Combine the arguments of the two FROM clauses
3. AND together all the WHERE clauses, replacing IN by =

SELECT ssnum

FROM Employee
WHERE dept IN (SELECT dept
FROM Techdept);

becomes

SELECT ssnum
FROM Employee, Techdept
WHERE Employee.dept = Techdept.dept;

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

61

Rewriting of Uncorrelated Subqueries

* Potential problem with duplicates

SELECT avg(salary)

FROM Employee

WHERE manager IN (SELECT manager
FROM Techdept);

rewritten as

SELECT avg(salary)
FROM Employee, Techdept
WHERE Employee.manager = Techdept.manager;

* The rewritten query may include an employee record several
times if that employee's manager manages several departments.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

62

Rewriting of Uncorrelated Subqueries

e Solution: use a temporary table with DISTINCT to eliminate
duplicates from the nested relation

SELECT DISTINCT manager INTO Temp
FROM Techdept;

SELECT avg(salary)
FROM Employee, Temp

WHERE Employee.manager = Temp.manager;

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

63

Rewriting of Correlated Subqueries

 Query: find the employees who earn more than the average
salary in their tech department

SELECT ssnum
FROM Employee el
WHERE salary > (SELECT avg(e2.salary)
FROM Employee e2, Techdept
WHERE e2.dept = Techdept.dept
AND e2.dept = el.dept);

* This could be inefficient; same average salary computed multiple
times

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

64

Rewriting of Correlated Subqueries

e Solution

INSERT INTO Temp

SELECT avg(salary) as avsalary, Employee.dept
FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

GROUP BY Employee.dept;

* Returns the average of salaries per tech department

SELECT ssnum
FROM Employee, Temp
WHERE salary > avsalary
AND Employee.dept = Temp.dept;

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

65

Rewriting of Correlated Subqueries

* Possible problem

 Query: Find employees whose number of friends equals the
number of employees in their tech department

SELECT ssnum
FROM Employee el
WHERE numfriends = (SELECT COUNT(e2.ssnum)
FROM Employee e2, Techdept
WHERE e2.dept = Techdept.dept
AND e2.dept = el.dept);

Employee(ssnum, name, manager, dept, salary, numfriends)

Student(ssnum, name, course, year)

Techdept(dept, manager, location)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 66

Rewriting of Correlated Subqueries

e Solution would be...

INSERT INTO Temp

SELECT COUNT(ssnum) as numcolleagues, Employee.dept
FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

GROUP BY Employee.dept;

SELECT ssnum

FROM Employee, Temp

WHERE numfriends = numcolleagues
AND Employee.dept = Temp.dept;

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

67

Rewriting of Correlated Subqueries

* The COUNT bug

Let us consider Ana who is not in a tech department.

In the original query, Ana's number of friends would be compared to the
count of an empty set, which is 0. In case Ana has no friends, she would
survive the selection.

In the transformed query, Ana's record would not appear because she
does not work for a tech department.

This is a limitation of the correlated subquery rewriting technique when
COUNT is involved.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 68

(Ab)use of Temporaries

Query: Find all employees in the information systems department
who earn more than $40000

INSERT INTO Temp
SELECT *

FROM Employee

WHERE salary > 40000;

SELECT ssnum

FROM Temp
WHERE Temp.dept = 'Information Systems’;

Optimizer would miss the opportunity to use the index on dept

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

69

(Ab)use of Temporaries

e More efficient solution

SELECT ssnum
FROM Employee
WHERE dept =

"Information Systems'

AND salary > 40000;

IST, MEIC/MECD/METI

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

70

Join Conditions

* |tis agood idea to express join conditions on clustered indexes.

— Possibility of using merge join without need for sorting

* If that fails, it is a good idea to express join conditions on
numerical attributes rather than on string attributes

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

71

Join Conditions

 Example: Find all students who are also employees

SELECT *
FROM Employee, Student
WHERE Employee.name = Student.name;

 Both tables have index on name, but it is a non-clustered index;
the following join would be much more efficient:

SELECT *
FROM Employee, Student
WHERE Employee.ssnum = Student.ssnum;

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

72

Use of HAVING

Do not use HAVING when WHERE is enough

SELECT avg(salary) as avgsalary, dept
FROM Employee

GROUP BY dept

HAVING dept = 'Information Systems';

SELECT avg(salary) as avgsalary, dept
FROM Employee

WHERE dept = 'Information Systems'
GROUP BY dept;

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Use of HAVING

* HAVING should be reserved for aggregates on groups

SELECT avg(salary) as avgsalary, dept
FROM Employee

GROUP BY dept

HAVING count(ssnum) > 100;

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

74

Use of Views

* Views may cause queries to execute inefficiently

CREATE VIEW Techlocation AS

SELECT ssnum, Techdept.dept, location
FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept;

SELECT dept
FROM Techlocation
WHERE ssnum = 43253265;

* Optimizers expand views when identifying the query blocks to be
optimized

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

75

Use of Views

* The selection from Techlocation is expanded into a join:

SELECT dept

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept
AND ssnum = 43253265;

* But the following less expensive query is possible, since dept is an
attribute of Employee

SELECT dept
FROM Employee
WHERE ssnum = 43253265;

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

76

Performance Impact of Query Rewritings

Throughput ratio

—-10

IST, MEIC/MECD/METI

>10,000

80
70

60
50

B SQL Server

O Oracle
0 DB2

40
30

20
10

< _ ¢
"»\C' \}6@' Q,@ﬁ 'Y)\}& r\b'é&v ;’\\qu 4\\6:\;
-\ .
S > &>
NS NS & & At
@ o v
N & N
o> < ,\b
¢ > RS
S o
" L
LA LN
S 9
O _
N

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

77

	Slide 1: Data Administration in Information Systems
	Slide 2: Database tuning
	Slide 3: What is Database Tuning?
	Slide 4: Why Database Tuning?
	Slide 5: Why is Database Tuning hard?
	Slide 6: Database Tuning
	Slide 7: Tuning Principles
	Slide 8: Think globally, fix locally
	Slide 9: Partitioning breaks bottlenecks
	Slide 10: Start-up costs are high; running costs are low
	Slide 11: Render unto server what is due unto server
	Slide 12: Be prepared for trade-offs
	Slide 13: Database Tuning
	Slide 14: Tuning Schemas: Overview
	Slide 15: Database Schemas (recap)
	Slide 16: Some Schemas Better than Others
	Slide 17: Some Schemas Better than Others
	Slide 18: Functional Dependency
	Slide 19: Key of a Relation
	Slide 20: Normalization
	Slide 21: Example 1
	Slide 22: Example 2
	Slide 23: Example 3
	Slide 24: Tuning Normalization
	Slide 25: Tuning Denormalization
	Slide 26: Denormalizing: Data
	Slide 27: Denormalizing: Denormalized Relation
	Slide 28: Queries on Normalized vs. Denormalized Schema
	Slide 29: Denormalization
	Slide 30: Vertical Partitioning: Example
	Slide 31: Vertical Partitioning
	Slide 32: Vertical Partitioning
	Slide 33: Vertical Partitioning: Rule
	Slide 34: Vertical Antipartitioning: Example
	Slide 35: Horizontal Partitioning
	Slide 36: Horizontal Partitioning (Cont.)
	Slide 37: Aggregate Maintenance
	Slide 38: Example
	Slide 39: Solution: Aggregation Maintenance
	Slide 40: Aggregate Maintenance
	Slide 41: Materialized Views in Oracle
	Slide 42: Database Tuning
	Slide 43: Query Tuning
	Slide 44: Query Monitoring
	Slide 45: Query Rewriting
	Slide 46: Running Example
	Slide 47: Query Rewriting Techniques
	Slide 48: Index Usage
	Slide 49: Eliminate Unneeded DISTINCTs
	Slide 50: Eliminate Unneeded DISTINCTs (Cont.)
	Slide 51: DISTINCT Unnecessary
	Slide 52: When DISTINCT is Required
	Slide 53: Reaching
	Slide 54: Reaching: Main Theorem
	Slide 55: Reaching: Proof Sketch
	Slide 56: Reaching: Example 1
	Slide 57: Reaching: Example 2
	Slide 58: Reaching: Example 3
	Slide 59: Types of Nested Queries
	Slide 60: Types of Nested Queries (Cont.)
	Slide 61: Rewriting of Uncorrelated Subqueries
	Slide 62: Rewriting of Uncorrelated Subqueries
	Slide 63: Rewriting of Uncorrelated Subqueries
	Slide 64: Rewriting of Correlated Subqueries
	Slide 65: Rewriting of Correlated Subqueries
	Slide 66: Rewriting of Correlated Subqueries
	Slide 67: Rewriting of Correlated Subqueries
	Slide 68: Rewriting of Correlated Subqueries
	Slide 69: (Ab)use of Temporaries
	Slide 70: (Ab)use of Temporaries
	Slide 71: Join Conditions
	Slide 72: Join Conditions
	Slide 73: Use of HAVING
	Slide 74: Use of HAVING
	Slide 75: Use of Views
	Slide 76: Use of Views
	Slide 77: Performance Impact of Query Rewritings

