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Failure Classification

 Transaction failure:

— Logical errors: transaction cannot complete due to some internal error
condition

— System errors: the database system must terminate an active transaction
due to an error condition (e.g. deadlock)
e System crash: a power failure or other hardware or software
failure causes the system to crash.
— Non-volatile storage is assumed not to be corrupted by system crash

* Database systems have numerous integrity checks to prevent
corruption of disk data

* Disk failure: a head crash or similar disk failure destroys all or
part of disk storage

— Destruction is assumed to be detectable: disk drives use checksums to
detect failures
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Recovery Algorithms

* Suppose transaction T, transfers 50€ from account A to account B
— Two updates: subtract 50 from A, and add 50 to B

* Transaction T, requires updates to A and B to be output to the
database.

— A failure may occur after one of these modifications have been made but
before both of them are made.

— Modifying the database without ensuring that the transaction will commit
may leave the database in an inconsistent state

— Not modifying the database may result in lost updates if failure occurs just
after transaction commits

* Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure enough
information exists to recover from failures

2. Actions taken after a failure to bring the database contents to a state that
ensures atomicity, consistency and durability
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Storage Structure

* Volatile storage
— Does not survive system crashes
— Examples: main memory, cache memory

* Non-volatile storage
— Survives system crashes
— Examples: disk, tape, flash memory, non-volatile RAM
— But may still fail, losing data

e Stable storage
— An ideal form of storage that survives all failures

— Approximated by maintaining multiple copies on non-volatile media

 RAID is not enough; copies should be at different remote sites to
protect against disasters such as fire or flooding
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Data Access

* Physical blocks are those blocks residing on the disk.

* Buffer blocks are the blocks residing temporarily in main
memory.

* Block movements between disk and main memory are initiated
through the following two operations:
— input(B) transfers the physical block B to main memory.

— output(B) transfers the buffer block B to the disk, and replaces the
appropriate physical block there.

* We assume, for simplicity, that each data item fits in, and is
stored inside, a single block.
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Data Access (Cont.)

* Each transaction T, has its private work-area in which local copies
of all data items accessed and updated by it are kept.
— T.'slocal copy of a data item X is called x;.

* Transferring data items between system buffer blocks and its
private work-area done by:
— read(X) assigns the value of data item X to the local variable x..

— write(X) assigns the value of local variable x; to data item X in the buffer
block.

— Note: output(B,) need not immediately follow write(X). System can
perform the output operation when it deems fit.

e Transactions

— Must perform read(X) before accessing X for the first time (subsequent
reads can be from local copy)

— write(X) can be executed at any time before the transaction commits
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Example of Data Access

buffer ©
Buffer Block A X le| Input(A)
_-_-_-_‘_‘_'_'_'_‘—'—-—.
T A
Buffer Block B i Y .
/4 output(B) 7
\\w-.___/
read(X)
write(Y)
X
é IS
Y
work area work area
of T, of T,
memaory disk
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Recovery and Atomicity

* To ensure atomicity despite failures, we first output information
describing the modifications to stable storage without modifying

the database itself.

 We study log-based recovery mechanisms in detail

— We first present key concepts

— And then present the actual recovery algorithm

e Less used alternative: shadow-copy
— Briefly described in the book

db-poing db-pointer

H

old copy of
database
(to be deleted)

old copy of
database

shadow-copy

new copy of
database

(a) Before update (b) After update
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Log-Based Recovery

A log is a sequence of log records.
— The records keep information about update activities on the database.
— The log is kept on stable storage.

When transaction T; starts, it registers itself by writing a

<T. start> log record

Before T, executes write(X), a log record is written:
<Ti' X’ Vl’ V2>

— where V, is the value of X before the write (the old value), and V, is the
value to be written to X (the new value).

When T, finishes, the following log record is written:
<T. commit>
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Transaction Commit

e Atransaction is said to have committed when its commit log
record is output to stable storage
— All previous log records of the transaction must have been output already

* Writes performed by a transaction may still be in the buffer when
the transaction commits, and may be output later
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Database Modification

 Database modifications can be:

— immediate: updates of an uncommitted transaction are made to the disk
before the transaction commits

— deferred: updates to disk only at the time of transaction commit

* OQOutput of updated blocks to disk can take place at any time
before or after transaction commit

* Update log record must be written before database item is
written

— For the moment, we assume that the log record is output directly to stable
storage
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Database Modification Example

Log Write Output

<T, start>
<T,, A, 1000, 950>
<T,, B, 2000, 2050>

A =950
B =2050
<T, commit>
<T, start>
<T,, C, 700, 600>
¢ =600 <[ C output before }
B, C T, commits

<T, commit>

A A output after T,
commits
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Recovering from Failure

 When recovering after failure:
— Transaction T; needs to be undone if the log

* contains the record <T; start>
* but does not contain either the record <T; commit> or <T; abort>

— Transaction T; needs to be redone if the log
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Undo and Redo Operations

* Undo and Redo of Transactions
— undo(T): restores the value of all data items updated by T, to their old
values, going backwards from the last log record for T,
e Each time a data item X is restored to its old value V a special log
record <T, X, V> is written out (compensation log record)
* When undo of a transaction is complete, a log record <T, abort> is
written out.
— redo(T,): sets the value of all data items updated by T; to the new values,
going forward from the first log record for T,

* No logging is done in this case
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Recovering from Failure (Cont.)

* Suppose that transaction T; was undone earlier, the <T; abort>
record was written to the log, and then a failure occurs

* Onrecovery from failure, transaction T; is redone

— Such a redo redoes all the original actions of transaction T; including the
steps that restored old values!

* This is known as repeating history
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Recovery Example

 Below we show the log as it appears at three instances of time:

<T, start> <T, start> <T, start>
<T,, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<Ty, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>

<T, commit> <T, commit>

<T, start> <T; start>

<T,, C, 700, 600> <T,, C, 700, 600>
<T, commit>

(a) (b) (©)

 Recovery actions in each case above are:

a) undo(T7,): B is restored to 2000 and A to 1000, and log records
<T,, B, 2000>, <T,, A, 1000>, <T,, abort> are written out

b) redo(T,) and undo(T,): A and B are set to 950 and 2050, and C is restored
to 700. Log records <T,, C, 700>, <T,, abort> are written out.

c) redo(T,) and redo(T,): A and B are set to 950 and 2050, respectively.
Then Cis set to 600.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 18



Checkpoints

* Redoing/undoing all transactions recorded in the log can be very

slow
— Processing the entire log is time-consuming if the system has run for a
long time
— We might unnecessarily redo transactions which have already output
their updates to the database.
e Streamline recovery procedure by periodically performing
checkpointing

Output all log records currently residing in main memory onto stable
storage.

Output all modified buffer blocks to the disk.

Write a log record <checkpoint L> onto stable storage where L is a
list of all transactions active at the time of checkpoint.

All updates are on hold while doing checkpointing
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Example of Checkpoints

tc tf N
T,
—
T,
|_
LE
l—
T
checkpoint system failure

* Recovery after system failure:

— Ignore T, (updates already output to disk due to checkpoint)
— Redo T,and T,
— Undo T,
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Checkpoints (Cont.)

* During recovery we need to consider only the most recent
transaction T, that started before the checkpoint, and
transactions that started after T.

— Scan backwards from end of log to find the most recent <checkpoint L>
record

— Only transactions that are in L or started after the checkpoint need to be
redone or undone

— Transactions that committed or aborted before the checkpoint already
have all their updates output to stable storage.
 Some earlier part of the log may be needed for undo operations

— Continue scanning backwards till a record <T, start> is found for every
transaction T; in L.

— Parts of log prior to earliest <T, start> record above are not needed for
recovery, and can be erased whenever desired.
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Recovery Algorithm

* Logging (during normal operation):
— <T,start> at transaction start
— <T, X, V,, V,>for each update, and
— <T,commit> at transaction end

* Transaction rollback (during normal operation, no crash):

— Let T, be the transaction to be rolled back
— Scan log backwards from the end, and for each log record of T, of the form
<T, X, V;, V>
* Perform the undo by writing V; to X;
* Write a log record <T, X, V> (compensation log record)

— Once the record <T, start> is found stop the scan and write the log record
<T.abort>
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Recovery Algorithm (Cont.)

* Recovery from failure: Two phases

— Redo phase: replay updates of all transactions, whether they committed,
aborted, or are incomplete

— Undo phase: undo all incomplete transactions

 Redo phase:
Find last <checkpoint [> record, and set undo-list to L.
Scan forward from above <checkpoint L> record
1. Whenever a record <T, X, Vy, V> or <T, X, V,> is found, redo it by
writing V, to X,
2. Whenever a log record <T; start> is found, add T, to undo-list

3. Whenever a log record <T; commit> or <T; abort> is found, remove T,
from undo-list
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Recovery Algorithm (Cont.)

* Undo phase:
1. Scan log backwards from end

1. Whenever a log record <T, X, Vi, Vy>is found where T;is in undo-list
perform the following rollback actions:

1. perform undo by writing V; to X;
2. write a compensation log record <T, X, V>
2. Whenever a log record <T; start> is found where T is in undo-list,
1. Write a log record <T; abort>
2. Remove T; from undo-list
3. Stop when undo-list is empty
1. i.e.<T,start> has been found for every transaction in undo-list

e After undo phase completes, normal transaction processing can
commence
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Example of Recovery

older

3 End of log
at crash!

Log records
added during
recovery

Beginning of log
<To start>

<To, B, 2000, 2050>
<T,start>
<checkpoint {Ty, T;}>
<T,, C, 700, 600>
<T; commit>

<T, start>

<T,, A, 500, 400>
<Tp, B, 2000>

T rollback

(during norma
operation)

begins

Start log recordsﬁ

To rollback | 5
complete L

\TO abort>

<T,, A, 500> S

T>is incomplet

— at crash

)

found for all 3
transactions in
undo list
Redo Pass

5

Y 6
Undo list: T,  Undo Pass
VY

<T, abort>

Y
newer
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Log Record Buffering

* Log record buffering: log records are buffered in main memory,
instead of being output directly to stable storage.

— Log records are output to stable storage when a block of log records in the
buffer is full, or a log force operation is executed.

* Log force is performed to commit a transaction by forcing all its
log records (including the commit record) to stable storage.

* Several log records can thus be output using a single output
operation, reducing the /O cost.
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Log Record Buffering (Cont.)

* The rules below must be followed if log records are buffered:
— Log records are output to stable storage in the order in which they are
created.

— Transaction T, enters the commit state only when the log record
<T. commit> has been output to stable storage.

— Before a block of data in main memory is output to the database, all log
records pertaining to data in that block must have been output to stable

storage.
* This rule is called the write-ahead logging (WAL) rule
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Log Record Buffering (Cont.)

e After the log records have been written to disk, blocks of data in
main memory are output to the database.

No updates should be in progress on a block when it is output to
disk. Can be ensured as follows:

Before writing a data item, transaction acquires exclusive lock on block
containing the data item

— Lock can be released once the write is completed.
* Such locks held for short duration are called latches.
* To output a block to disk

First acquire an exclusive latch on the block

* Ensures no update can be in progress on the block
Then perform a log flush

Then output the block to disk
Finally release the latch on the block
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ARIES

* ARIES is a state-of-the-art recovery algorithm
— The recovery algorithm we studied earlier is modeled after ARIES, but

greatly simplified

* In ARIES,

Blocks are called pages
Every log record has a log sequence number (LSN)

Every page in the database contains the LSN of the most recent log record
that changed that page

e This is called the pageLSN

* Updating a page creates a new log record and sets the pageLSN of that
page to the LSN of that log record.

Each log record contains a pointer to the previous log record of the same
transaction

e Thisis called the prevLSN
* The first log record of a transaction has prevLSN = NULL
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ARIES (Cont.)

Besides the log, ARIES uses the two additional data structures

Dirty page table

— Contains one entry for each dirty page in the buffer, i.e. a page with
changes that are not yet reflected on disk.

— Each entry contains a recLSN, which is the LSN of the first log record that
caused the page to become dirty.

Transaction table

— Contains one entry for each active transaction.

— Each entry contains a lastLSN, which is the LSN of the most recent log
record for the transaction.
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Data Structures in ARIES

pagelD recLSN
P500
T~ prevLSN  transID type pagelD length offset before-image after-image
PG00 ]
| T1000 update P500 3 21 ABC DEF
P505 /
iy
/ I
DIRTY PAGE TABL | ; T2000 update P600 3 41 HIJ KLM
\
o 12000 update P500 3 20 GDE QRS
transID lastLSN
— T1000 update P505 3 21 TUV WXY
T1000
T2000 LOG
TRANSACTION TABLE
prevLSN transID type pagelD length offset before-image | after-image
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Checkpoints in ARIES

* Checkpointing in ARIES has multiple steps:

A begin_checkpoint record is written to indicate when the checkpoint
starts.

An end_checkpoint record is constructed, including the current contents
of the transaction table and of the dirty page table.

* While the end_checkpoint record is being constructed, the system
continues executing transactions and possibly writing other log
records.

The system writes the end_checkpoint record to stable storage.

* The transaction table and the dirty page table are accurate at the
time of the begin_checkpoint record.

The system writes the LSN of the begin_checkpoint record to a special
position on disk. This checkpoint is now complete.
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Recovery in ARIES

* The recovery process in ARIES has three phases:

1. Analysis: Identifies dirty pages in the buffer pool (i.e., changes that have
not been written to disk) and active transactions at the time of the crash.

2. Redo: Repeats all actions, starting from an appropriate point in the log,
and restores the database state to what it was at the time of the crash.

3. Undo: Undoes the actions of transactions that did not commit, so that
the database reflects only the actions of committed transactions.

UNDO LOG
Oldest log record

A =~ A of transactions
active at crash

REDO Smallest recLSN
— B in dirty page table
at end of Analysis

ANALYSIS
== ¢ Most recent checkpoint

v i CRASH (end of log)
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Analysis phase

* Analysis begins at the most recent checkpoint
— Initializes the dirty page table and transaction table from that checkpoint.

* Analysis proceeds forward until the end of the log

— New dirty pages are added the dirty page table with the recLSN of the first
log record where those pages have become dirty.

— Transactions are added to (or updated in) the transaction table with the
lastLSN of the last log record where those transactions appeared.

— Completed transactions are removed from the transaction table, and are
marked for redo.

— The remaining transactions were active at the time of the crash, and are
marked for undo.
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Redo phase

* Redo begins at the smallest recLSN found in the dirty page table
— This recLSN is the oldest update that mat not have been written to disk.

 Redo proceeds forward until the end of the log

— All updates to pages in the dirty page table are reapplied, except for
updates with LSN < recLSN or LSN < pageLSN.

— The pagelLSN is set to the LSN of the log record being redone.
— No additional log records are written during the redo phase.

— The redo phase also reapplies the updates of compensation log records
created during the undo phase.
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Undo phase

* Undo begins at the end of the log

— The transaction table identifies the transactions that were active at the
time of the crash; the goal is to undo those transactions.

* Undo goes backward until the beginning of active transactions
— Starts at the lastLSN of each transaction; goes backward using prevLSN
— Each update is undone by reverting the page to its old contents
— When undoing, a compensation log record (CLR) is written to the log
— The CLR has a pointer to the next action to be undone (undonextLSN)

* In the event of a crash, this allows skipping actions that have already
been undone (because the redo phase redoes the CLRs).

 The last CLR of a transaction has undonextLSN = NULL, which indicates
that the transaction has been completely undone.

— CLRs are not undone in the undo phase, but are redone in the redo phase.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 37



ARIES: Examples

* The following examples are from the book:

— Database Management Systems, 3rd edition: R. Ramakrishnan, J. Gehrke
2003 McGraw-Hill

* Note the following differences:

— There is a special <T; end> event that marks the end of a transaction
(when it has been committed or completely rolled back)

— The <T, abort> event does not indicate when a transaction has been
completely undone (this is indicated by <T; end>)

— <T,abort> indicates when a transaction error occurred

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

38



ARIES: Example 1

* Analysis
transID | lastLSN pagelD | recLSN
T1 10 P5 10
T3 60 P3 20
P1 50
* Redo

— LSN 10; LSN 20; LSN 50; LSN 60

* Undo
— LSN 60; LSN 50; LSN 10
— LSN 70: CLR Undo T3 LSN 60, undonextLSN = 50

— LSN 80: CLR Undo T3 LSN 50, undonextLSN = NULL, T3 end
— LSN 90: CLR Undo T1 LSN 10, undonextLSN = NULL, T1 end
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LSN

10

20

30

40

50

60

LOG

update: T1 writes PS5
update: T2 writes P3
T2 commit

T2 end

update: T3 writes P1
update: T3 writes P3

CRASH, RESTART
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ARIES: Example 2

* Analysis
transiD | lastLSN
T1 70
T3 60
e Redo

pagelD | recLSN
P5 20
P3 30

— LSN 20; LSN 30; LSN 60

* Undo

— LSN 60; LSN 20

LSN
00

10

20

30

40

50

60

70

— LSN 80: CLR Undo T3 LSN 60, undonextLSN = NULL, T3 end
— LSN 90: CLR Undo T1 LSN 20, undonextLSN = NULL, T1 end
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LOG

begin_checkpoint
end_checkpoint
update: T1 writes PS
update: T2 writes P3
T2 commit

T2 end

update: T3 writes P3
T1 abort

CRASH, RESTART
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ARIES: Example 3

* Analysis
LSN LOG
transID | lastLSN pagelD | recLSN 00 — begin_checkpoint
T1 80 P1 20 10 — end_checkpoint
13 90 P2 30 20 — update: T1 writes P1
P3 40 30 —'— update: T2 writes P2
P> 80 40 — update: T3 writes P3
* Redo :

50 = T2 commit

— LSN 20; LSN 30; LSN 40; LSN 60; LSN 80 :
60 — update: T3 writes P2

o UndO 70 — T2 end
— LSN 80; LSN 60; LSN 40; LSN 20 80 —— update: T1 writes PS
— LSN 100: CLR Undo T1 LSN 80, undonextLSN = 20 90 — T3 abort
— LSN 110: CLR Undo T3 LSN 60, undonextLSN = 40 M CRASH, RESTART

— LSN 120: CLR Undo T3 LSN 40, undonextLSN = NULL, T3 end
— LSN 130: CLR Undo T1 LSN 20, undonextLSN = NULL, T1 end
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ARIES: Example 4

 LSN 30: T1 aborts LSN LOG
00,05 === begin_checkpoint, end_checkpoint
e LSN40: CLRUndo T1 LSN 10, T1 end cE_checipoint, end_checkpomn
10 — date: T1 writes P5
* (No crash yet) j Updater Thwrltes T T
20 —'— update: T2 writes P3
30 — T1 abort prevl. SN
40,45 —— CLR: Undo T1LSN 10, T1 end
50 — update: T3 writes P1
60 — update: T2 writes P5 prevLSN
X CRASH, RESTART
70 — CLR: Undo T2ZLSN 60 ——~
80,85 —— CLR: Undo T3 LSN 50, T3 end
X CRASH, RESTART

90,95 == CLR: Undo T2 LSN 20, T2 end
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ARIES: Example 4 (Cont.)

e (First crash) Analysis

transiD | lastLSN
T2 60
T3 50
e Redo

— LSN 10; LSN 20; LSN 40 (CLR); LSN 50; LSN 60

* Undo

pagelD | recLSN
P5 10
P3 20
P1 50

— LSN 60; LSN 50; Crash!!' X

— LSN 70: CLR Undo T2 LSN 60, undonextLSN = 20
— LSN 80: CLR Undo T3 LSN 50, undonextLSN = NULL, T3 end
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LSN

00, 05

10

20

30

40, 45

50

60

70

80, 85

90, 95
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LOG
begin_checkpoint, end checkpoint
update: T1 writes P5 ‘\
update: T2 writes P3
T1 abort prevL.SN
CLR: Undo T1 LSN 10, T1 end
update: T3 writes P1
update: T2 writes P5 pEVLSN
CRASH, RESTART
CLR: Undo T2 LSN 60 7= 1 4N
CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LLSN 20, T2 end
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ARIES: Example 4 (Cont.)

— LSN 10; LSN 20; LSN 40 (CLR); LSN 50; LSN 60;
LSN 70 (CLR); LSN 80 (CLR);

X CRASH, RESTART

70 — CLR: Undo T2 LLSN 60 indonextLSN

80,85 —— CLR: Undo T3 LSN 50, T3 end

* (Second crash) Analysis N e oo
4 H )
i 00, 05 === begin_checkpoint, end_checkpoint i
1 ; 1
transiD | lastLSN pagelD | recLSN L0 —— update: T1 writes P ‘\ i
1 H 1
1 H 1
I :
T2 | 70 P> 10 i 20 =t update: T2 writes P3 i
1 : 1
P3 20 | : I
I 30 = TI1 abort !
: i prevLSN !
P1 50 i i
' 40,45 =+ CLR:Undo T1LSN 10, T1 end !
I : i
1 H 1
i 50 = update: T3 writes P1 i
1 i 1
1 . 1
1 : . _ !
° R ed 0o i 60 update: T2 writes P5 prevLSN i
| |
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1

X CRASH, RESTART

* Undo 90,95 = CLR: Undo T2 LSN 20, T2 end
— (LSN 70); LSN 20

— LSN 90: CLR Undo T2 LSN 20, undonextLSN = NULL, T2 end

Ve
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Failure with Loss of Nonvolatile Storage

* So far we assumed no loss of non-volatile storage
* Technique similar to checkpointing used to deal with loss of non-
volatile storage
— Periodically dump the entire content of the database to stable storage

— No transaction may be active during the dump procedure; a procedure
similar to checkpointing must take place

e Output all log records currently residing in main memory onto stable
storage.

e Output all buffer blocks onto the disk.
* Copy the contents of the database to stable storage.
e Output a record <dump> to log on stable storage.
* To recover from disk failure
— restore database from most recent dump.

— Consult the log and redo all transactions that committed after the dump
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Remote Backup Systems

 Remote backup systems provide high availability by allowing
transaction processing to continue even if the primary site is
destroyed.

primary

S

IST, MEIC/MECD/METI

log
records
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backup

S e
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Remote Backup Systems (Cont.)

* Detection of failure: Backup site must detect when primary site
has failed

— To distinguish primary site failure from link failure, maintain several
communication links between the primary and the remote backup.

— Heart-beat messages

 Transfer of control:

— To take over control, backup site first performs recovery using its copy of
the database and all the log records it has received from the primary.

* Thus, completed transactions are redone and incomplete transactions
are rolled back.

— When the backup site takes over processing, it becomes the new primary

— To transfer control back to old primary when it recovers, old primary must
receive redo logs from the old backup and apply all updates locally.
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Remote Backup Systems (Cont.)

* Time to recover:

— To reduce delay in takeover, backup site periodically processes the redo
log records (in effect, performing recovery from previous database state),
performs a checkpoint, and can then delete earlier parts of the log.

* Hot-Spare configuration permits very fast takeover:
— Backup continually processes redo log record as they arrive, applying the

updates locally.
— When failure of the primary is detected the backup rolls back incomplete
transactions, and is ready to process new transactions.
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Remote Backup Systems (Cont.)

* Time to commit;:

— Ensure durability of updates by delaying transaction commit until update
is logged at backup

* Avoid this delay by permitting lower degrees of durability:

— One-safe: commit as soon as transaction's commit log record is written at
primary
Problem: updates may not arrive at backup before it takes over.

— Two-very-safe: commit when transaction's commit log record is written at
primary and backup

Reduces availability since transactions cannot commit if either site
fails.

— Two-safe: proceed as in two-very-safe if both primary and backup are
active. If only the primary is active, the transaction commits as soon as is
commit log record is written at the primary.
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