Data Administration in Information Systems

Database recovery

SEVENTH EDITION

Database System Concepts

= Abraham Silbe'rscihat.z'f
~ Henry F.Korth -

]
Education

Chapter 16 Query Optimization

16.1 Overview 743

16.2 Transformation of Relational
Expressions 747

16.3 Estimating Statistics of Expression
Results 757

16.4 Choice of Evaluation Plans 766

Contents

16.5 Materialized Views 778
16.6 Advanced Topics in Query
Optimization 783
16.7 Summary 787
Exercises 789
Further Reading 794

PART SEVEN H TRANSACTION MANAGEMENT

Chapter 17 Transactions

17.1 Transaction Concept 799

17.2 A Simple Transaction Model 801

17.3 Storage Structure &04

17.4 Transaction Atomicity and Durability 805
17.5 Transaction Isolation 807

17.6 Serializability 812

17.7 Transaction Isolation and Atomicity &19

Chapter 18 Concurrency Control

18.1 Lock-Based Protocols 833

18.2 Deadlock Handling 849

18.3 Multiple Granularity 853

18.4 Insert Operations, Delete Operations, and
Predicate Reads 857

18.5 Timestamp-Based Protocols 861

18.6 Validation-Based Protocols 866

18.7 Multiversion Schemes 869

Chapter 19 Recovery System

19.1 Failure Classification 907

19.2 Storage 908

19.3 Recovery and Atomicity 912

19.4 Recovery Algorithm 922

19.5 Buffer Management 926

19.6 Failure with Loss of Non-Volatile
Storage 930

19.7 High Availability Using Remote Backup
Systems 931

17.8 Transaction Isolation Levels 821
17.9 Implementation of Isolation Levels 823
17.10 Transactions as SQL Statements 826
17.11 Summary 828

Exercises 831

Further Reading 834

18.8 Snapshot Isolation 872

18.9 Weak Levels of Consistency in
Practice 880

18.10 Advanced Topics in Concurrency
Control 883

18.11 Summary 894
Exercises 899
Further Reading 904

19.8 Early Lock Release and Logical Undo
Operations 935
19.9 ARIES 941
19.10 Recovery in Main-Memory Databases 947
19.11 Summary 948
Exercises 952
Further Reading 936

xi

IST, MEIC/MECD/METI

Administragdo de Dados e Sistemas de Informag&o (ADSI) - 2022/2023 - 22 Sem

Database recovery

HVI DATABASE MANAGEMENT SYSTEMS
D a t d b ase M ana g emen t 18 CRASHRECOVERY 579
181 Introduction to ARIES 380

182 The Log 382

183 Other Recovery-Related Structures 585

184 The Write-Ahead Log Protocol 386

185 Checkpeinting 587

186 Recovering from a System Crash 587
18.6.1 Analysis Phase 588

18.6.2 Redo Phase 590

18.6.3 Undo Phase 592

187 Media Recovery 395

18.8 Other Approaches and Interaction with Concurrency Control 596

189 Review Questions 387
Part VI DATABASE DESIGN AND TUNING 603
19 SCHEMA REFINEMENT AND NORMAL FORMS 605
191 Introduction to Schema Refinement 606
19.11 Problems Caused by Redundancy 606

19.1.2 Decompositions 608

19.1.3 Problems Related to Decomposition 609

192 Functional Dependencies 611

19.3 Feasoning about FDs 612
1931 Closure of a Set of FDs 612

1932 Attribute Closure 614

194 Normal Forms 615
1941 Boyce-Codd Normal Form 615

1942 Third Normal Form 617

195 Properties of Decompositions 619
19.5.1 Lossless-Join Decomposition 619

1952 Dependency-Preserving Decomposition 621

19.6 Normalization 622
19.6.1 Decomposition into BCNF 622

19.6.2 Decomposition into 3INF 625

19.7 Schema Refinement in Database Design 629
19.7.1 Constraints on an Entity Set 630

19.7.2 Constraints on a Relationship Set 630

1973 Identifying Attributes of Entities 631

19.7.4 Identifying Entity Sets 633

198 Other Kinds of Dependencies 633
19.8.1 Multivalued Dependencies 634
Ramakrishnan -+ Gehrke e o o e
19.8.3 Join Dependencies G35

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Failure Classification

 Transaction failure:

— Logical errors: transaction cannot complete due to some internal error
condition

— System errors: the database system must terminate an active transaction
due to an error condition (e.g. deadlock)
e System crash: a power failure or other hardware or software
failure causes the system to crash.
— Non-volatile storage is assumed not to be corrupted by system crash

* Database systems have numerous integrity checks to prevent
corruption of disk data

* Disk failure: a head crash or similar disk failure destroys all or
part of disk storage

— Destruction is assumed to be detectable: disk drives use checksums to
detect failures

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Recovery Algorithms

* Suppose transaction T, transfers 50€ from account A to account B
— Two updates: subtract 50 from A, and add 50 to B

* Transaction T, requires updates to A and B to be output to the
database.

— A failure may occur after one of these modifications have been made but
before both of them are made.

— Modifying the database without ensuring that the transaction will commit
may leave the database in an inconsistent state

— Not modifying the database may result in lost updates if failure occurs just
after transaction commits

* Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure enough
information exists to recover from failures

2. Actions taken after a failure to bring the database contents to a state that
ensures atomicity, consistency and durability

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Storage Structure

* Volatile storage
— Does not survive system crashes
— Examples: main memory, cache memory

* Non-volatile storage
— Survives system crashes
— Examples: disk, tape, flash memory, non-volatile RAM
— But may still fail, losing data

e Stable storage
— An ideal form of storage that survives all failures

— Approximated by maintaining multiple copies on non-volatile media

 RAID is not enough; copies should be at different remote sites to
protect against disasters such as fire or flooding

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Data Access

* Physical blocks are those blocks residing on the disk.

* Buffer blocks are the blocks residing temporarily in main
memory.

* Block movements between disk and main memory are initiated
through the following two operations:
— input(B) transfers the physical block B to main memory.

— output(B) transfers the buffer block B to the disk, and replaces the
appropriate physical block there.

* We assume, for simplicity, that each data item fits in, and is
stored inside, a single block.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Data Access (Cont.)

* Each transaction T, has its private work-area in which local copies
of all data items accessed and updated by it are kept.
— T.'slocal copy of a data item X is called x;.

* Transferring data items between system buffer blocks and its
private work-area done by:
— read(X) assigns the value of data item X to the local variable x..

— write(X) assigns the value of local variable x; to data item X in the buffer
block.

— Note: output(B,) need not immediately follow write(X). System can
perform the output operation when it deems fit.

e Transactions

— Must perform read(X) before accessing X for the first time (subsequent
reads can be from local copy)

— write(X) can be executed at any time before the transaction commits

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Example of Data Access

buffer ©
Buffer Block A X le| Input(A)
--_-_‘_‘_'_'_'_‘—'—-—.
T A
Buffer Block B i Y .
/4 output(B) 7
\\w-.___/
read(X)
write(Y)
X
é IS
Y
work area work area
of T, of T,
memaory disk

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Recovery and Atomicity

* To ensure atomicity despite failures, we first output information
describing the modifications to stable storage without modifying

the database itself.

 We study log-based recovery mechanisms in detail

— We first present key concepts

— And then present the actual recovery algorithm

e Less used alternative: shadow-copy
— Briefly described in the book

db-poing db-pointer

H

old copy of
database
(to be deleted)

old copy of
database

shadow-copy

new copy of
database

(a) Before update (b) After update

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

10

Log-Based Recovery

A log is a sequence of log records.
— The records keep information about update activities on the database.
— The log is kept on stable storage.

When transaction T; starts, it registers itself by writing a

<T. start> log record

Before T, executes write(X), a log record is written:
<Ti' X’ Vl’ V2>

— where V, is the value of X before the write (the old value), and V, is the
value to be written to X (the new value).

When T, finishes, the following log record is written:
<T. commit>

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

11

Transaction Commit

e Atransaction is said to have committed when its commit log
record is output to stable storage
— All previous log records of the transaction must have been output already

* Writes performed by a transaction may still be in the buffer when
the transaction commits, and may be output later

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 12

Database Modification

 Database modifications can be:

— immediate: updates of an uncommitted transaction are made to the disk
before the transaction commits

— deferred: updates to disk only at the time of transaction commit

* OQOutput of updated blocks to disk can take place at any time
before or after transaction commit

* Update log record must be written before database item is
written

— For the moment, we assume that the log record is output directly to stable
storage

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

13

Database Modification Example

Log Write Output

<T, start>
<T,, A, 1000, 950>
<T,, B, 2000, 2050>

A =950
B =2050
<T, commit>
<T, start>
<T,, C, 700, 600>
¢ =600 <[C output before }
B, C T, commits

<T, commit>

A A output after T,
commits

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Recovering from Failure

 When recovering after failure:
— Transaction T; needs to be undone if the log

* contains the record <T; start>
* but does not contain either the record <T; commit> or <T; abort>

— Transaction T; needs to be redone if the log

IST, MEIC/MECD/METI

* contains the records <T; start>
* and contains the record <T,commit> or <T; abort>

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

15

Undo and Redo Operations

* Undo and Redo of Transactions
— undo(T): restores the value of all data items updated by T, to their old
values, going backwards from the last log record for T,
e Each time a data item X is restored to its old value V a special log
record <T, X, V> is written out (compensation log record)
* When undo of a transaction is complete, a log record <T, abort> is
written out.
— redo(T,): sets the value of all data items updated by T; to the new values,
going forward from the first log record for T,

* No logging is done in this case

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 16

Recovering from Failure (Cont.)

* Suppose that transaction T; was undone earlier, the <T; abort>
record was written to the log, and then a failure occurs

* Onrecovery from failure, transaction T; is redone

— Such a redo redoes all the original actions of transaction T; including the
steps that restored old values!

* This is known as repeating history

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

17

Recovery Example

 Below we show the log as it appears at three instances of time:

<T, start> <T, start> <T, start>
<T,, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<Ty, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>

<T, commit> <T, commit>

<T, start> <T; start>

<T,, C, 700, 600> <T,, C, 700, 600>
<T, commit>

(a) (b) (©)

 Recovery actions in each case above are:

a) undo(T7,): B is restored to 2000 and A to 1000, and log records
<T,, B, 2000>, <T,, A, 1000>, <T,, abort> are written out

b) redo(T,) and undo(T,): A and B are set to 950 and 2050, and C is restored
to 700. Log records <T,, C, 700>, <T,, abort> are written out.

c) redo(T,) and redo(T,): A and B are set to 950 and 2050, respectively.
Then Cis set to 600.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 18

Checkpoints

* Redoing/undoing all transactions recorded in the log can be very

slow
— Processing the entire log is time-consuming if the system has run for a
long time
— We might unnecessarily redo transactions which have already output
their updates to the database.
e Streamline recovery procedure by periodically performing
checkpointing

Output all log records currently residing in main memory onto stable
storage.

Output all modified buffer blocks to the disk.

Write a log record <checkpoint L> onto stable storage where L is a
list of all transactions active at the time of checkpoint.

All updates are on hold while doing checkpointing

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

19

Example of Checkpoints

tc tf N
T,
—
T,
|_
LE
l—
T
checkpoint system failure

* Recovery after system failure:

— Ignore T, (updates already output to disk due to checkpoint)
— Redo T,and T,
— Undo T,

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

20

Checkpoints (Cont.)

* During recovery we need to consider only the most recent
transaction T, that started before the checkpoint, and
transactions that started after T.

— Scan backwards from end of log to find the most recent <checkpoint L>
record

— Only transactions that are in L or started after the checkpoint need to be
redone or undone

— Transactions that committed or aborted before the checkpoint already
have all their updates output to stable storage.
 Some earlier part of the log may be needed for undo operations

— Continue scanning backwards till a record <T, start> is found for every
transaction T; in L.

— Parts of log prior to earliest <T, start> record above are not needed for
recovery, and can be erased whenever desired.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

21

Recovery Algorithm

* Logging (during normal operation):
— <T,start> at transaction start
— <T, X, V,, V,>for each update, and
— <T,commit> at transaction end

* Transaction rollback (during normal operation, no crash):

— Let T, be the transaction to be rolled back
— Scan log backwards from the end, and for each log record of T, of the form
<T, X, V;, V>
* Perform the undo by writing V; to X;
* Write a log record <T, X, V> (compensation log record)

— Once the record <T, start> is found stop the scan and write the log record
<T.abort>

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 22

Recovery Algorithm (Cont.)

* Recovery from failure: Two phases

— Redo phase: replay updates of all transactions, whether they committed,
aborted, or are incomplete

— Undo phase: undo all incomplete transactions

 Redo phase:
Find last <checkpoint [> record, and set undo-list to L.
Scan forward from above <checkpoint L> record
1. Whenever a record <T, X, Vy, V> or <T, X, V,> is found, redo it by
writing V, to X,
2. Whenever a log record <T; start> is found, add T, to undo-list

3. Whenever a log record <T; commit> or <T; abort> is found, remove T,
from undo-list

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

23

Recovery Algorithm (Cont.)

* Undo phase:
1. Scan log backwards from end

1. Whenever a log record <T, X, Vi, Vy>is found where T;is in undo-list
perform the following rollback actions:

1. perform undo by writing V; to X;
2. write a compensation log record <T, X, V>
2. Whenever a log record <T; start> is found where T is in undo-list,
1. Write a log record <T; abort>
2. Remove T; from undo-list
3. Stop when undo-list is empty
1. i.e.<T,start> has been found for every transaction in undo-list

e After undo phase completes, normal transaction processing can
commence

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 24

Example of Recovery

older

3 End of log
at crash!

Log records
added during
recovery

Beginning of log
<To start>

<To, B, 2000, 2050>
<T,start>
<checkpoint {Ty, T;}>
<T,, C, 700, 600>
<T; commit>

<T, start>

<T,, A, 500, 400>
<Tp, B, 2000>

T rollback

(during norma
operation)

begins

Start log recordsﬁ

To rollback | 5
complete L

\TO abort>

<T,, A, 500> S

T>is incomplet

— at crash

)

found for all 3
transactions in
undo list
Redo Pass

5

Y 6
Undo list: T, Undo Pass
VY

<T, abort>

Y
newer

IST, MEIC/MECD/METI

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

T rolled back
in undo pass

\

7

25

Log Record Buffering

* Log record buffering: log records are buffered in main memory,
instead of being output directly to stable storage.

— Log records are output to stable storage when a block of log records in the
buffer is full, or a log force operation is executed.

* Log force is performed to commit a transaction by forcing all its
log records (including the commit record) to stable storage.

* Several log records can thus be output using a single output
operation, reducing the /O cost.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 26

Log Record Buffering (Cont.)

* The rules below must be followed if log records are buffered:
— Log records are output to stable storage in the order in which they are
created.

— Transaction T, enters the commit state only when the log record
<T. commit> has been output to stable storage.

— Before a block of data in main memory is output to the database, all log
records pertaining to data in that block must have been output to stable

storage.
* This rule is called the write-ahead logging (WAL) rule

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

27

Log Record Buffering (Cont.)

e After the log records have been written to disk, blocks of data in
main memory are output to the database.

No updates should be in progress on a block when it is output to
disk. Can be ensured as follows:

Before writing a data item, transaction acquires exclusive lock on block
containing the data item

— Lock can be released once the write is completed.
* Such locks held for short duration are called latches.
* To output a block to disk

First acquire an exclusive latch on the block

* Ensures no update can be in progress on the block
Then perform a log flush

Then output the block to disk
Finally release the latch on the block

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

28

ARIES (Algorithm for Recovery and Isolation Exploiting Semantics)

HVI DATABASE MANAGEMENT SYSTEMS
D a t d b ase M ana g emen t 18 CRASHRECOVERY 579
181 Introduction to ARIES 380

182 The Log 382

183 Other Recovery-Related Structures 585

184 The Write-Ahead Log Protocol 386

185 Checkpeinting 587

186 Recovering from a System Crash 587
18.6.1 Analysis Phase 588

18.6.2 Redo Phase 590

18.6.3 Undo Phase 592

187 Media Recovery 395

18.8 Other Approaches and Interaction with Concurrency Control 596

189 Review Questions 387
Part VI DATABASE DESIGN AND TUNING 603
19 SCHEMA REFINEMENT AND NORMAL FORMS 605
191 Introduction to Schema Refinement 606
19.11 Problems Caused by Redundancy 606

19.1.2 Decompositions 608

19.1.3 Problems Related to Decomposition 609

192 Functional Dependencies 611

19.3 Feasoning about FDs 612
1931 Closure of a Set of FDs 612

1932 Attribute Closure 614

194 Normal Forms 615
1941 Boyce-Codd Normal Form 615

1942 Third Normal Form 617

195 Properties of Decompositions 619
19.5.1 Lossless-Join Decomposition 619

1952 Dependency-Preserving Decomposition 621

19.6 Normalization 622
19.6.1 Decomposition into BCNF 622

19.6.2 Decomposition into 3INF 625

19.7 Schema Refinement in Database Design 629
19.7.1 Constraints on an Entity Set 630

19.7.2 Constraints on a Relationship Set 630

1973 Identifying Attributes of Entities 631

19.7.4 Identifying Entity Sets 633

198 Other Kinds of Dependencies 633
19.8.1 Multivalued Dependencies 634
Ramakrishnan -+ Gehrke e o o e
19.8.3 Join Dependencies G35

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

ARIES

* ARIES is a state-of-the-art recovery algorithm
— The recovery algorithm we studied earlier is modeled after ARIES, but

greatly simplified

* In ARIES,

Blocks are called pages
Every log record has a log sequence number (LSN)

Every page in the database contains the LSN of the most recent log record
that changed that page

e This is called the pageLSN

* Updating a page creates a new log record and sets the pageLSN of that
page to the LSN of that log record.

Each log record contains a pointer to the previous log record of the same
transaction

e Thisis called the prevLSN
* The first log record of a transaction has prevLSN = NULL

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

30

ARIES (Cont.)

Besides the log, ARIES uses the two additional data structures

Dirty page table

— Contains one entry for each dirty page in the buffer, i.e. a page with
changes that are not yet reflected on disk.

— Each entry contains a recLSN, which is the LSN of the first log record that
caused the page to become dirty.

Transaction table

— Contains one entry for each active transaction.

— Each entry contains a lastLSN, which is the LSN of the most recent log
record for the transaction.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

31

Data Structures in ARIES

pagelD recLSN
P500
T~ prevLSN transID type pagelD length offset before-image after-image
PG00]
| T1000 update P500 3 21 ABC DEF
P505 /
iy
/ I
DIRTY PAGE TABL | ; T2000 update P600 3 41 HIJ KLM
\
o 12000 update P500 3 20 GDE QRS
transID lastLSN
— T1000 update P505 3 21 TUV WXY
T1000
T2000 LOG
TRANSACTION TABLE
prevLSN transID type pagelD length offset before-image | after-image

IST, MEIC/MECD/METI

Fields common to all log records

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Additional fields for update log records

32

Checkpoints in ARIES

* Checkpointing in ARIES has multiple steps:

A begin_checkpoint record is written to indicate when the checkpoint
starts.

An end_checkpoint record is constructed, including the current contents
of the transaction table and of the dirty page table.

* While the end_checkpoint record is being constructed, the system
continues executing transactions and possibly writing other log
records.

The system writes the end_checkpoint record to stable storage.

* The transaction table and the dirty page table are accurate at the
time of the begin_checkpoint record.

The system writes the LSN of the begin_checkpoint record to a special
position on disk. This checkpoint is now complete.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

33

Recovery in ARIES

* The recovery process in ARIES has three phases:

1. Analysis: Identifies dirty pages in the buffer pool (i.e., changes that have
not been written to disk) and active transactions at the time of the crash.

2. Redo: Repeats all actions, starting from an appropriate point in the log,
and restores the database state to what it was at the time of the crash.

3. Undo: Undoes the actions of transactions that did not commit, so that
the database reflects only the actions of committed transactions.

UNDO LOG
Oldest log record

A =~ A of transactions
active at crash

REDO Smallest recLSN
— B in dirty page table
at end of Analysis

ANALYSIS
== ¢ Most recent checkpoint

v i CRASH (end of log)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 34

Analysis phase

* Analysis begins at the most recent checkpoint
— Initializes the dirty page table and transaction table from that checkpoint.

* Analysis proceeds forward until the end of the log

— New dirty pages are added the dirty page table with the recLSN of the first
log record where those pages have become dirty.

— Transactions are added to (or updated in) the transaction table with the
lastLSN of the last log record where those transactions appeared.

— Completed transactions are removed from the transaction table, and are
marked for redo.

— The remaining transactions were active at the time of the crash, and are
marked for undo.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

35

Redo phase

* Redo begins at the smallest recLSN found in the dirty page table
— This recLSN is the oldest update that mat not have been written to disk.

 Redo proceeds forward until the end of the log

— All updates to pages in the dirty page table are reapplied, except for
updates with LSN < recLSN or LSN < pageLSN.

— The pagelLSN is set to the LSN of the log record being redone.
— No additional log records are written during the redo phase.

— The redo phase also reapplies the updates of compensation log records
created during the undo phase.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

36

Undo phase

* Undo begins at the end of the log

— The transaction table identifies the transactions that were active at the
time of the crash; the goal is to undo those transactions.

* Undo goes backward until the beginning of active transactions
— Starts at the lastLSN of each transaction; goes backward using prevLSN
— Each update is undone by reverting the page to its old contents
— When undoing, a compensation log record (CLR) is written to the log
— The CLR has a pointer to the next action to be undone (undonextLSN)

* In the event of a crash, this allows skipping actions that have already
been undone (because the redo phase redoes the CLRs).

 The last CLR of a transaction has undonextLSN = NULL, which indicates
that the transaction has been completely undone.

— CLRs are not undone in the undo phase, but are redone in the redo phase.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 37

ARIES: Examples

* The following examples are from the book:

— Database Management Systems, 3rd edition: R. Ramakrishnan, J. Gehrke
2003 McGraw-Hill

* Note the following differences:

— There is a special <T; end> event that marks the end of a transaction
(when it has been committed or completely rolled back)

— The <T, abort> event does not indicate when a transaction has been
completely undone (this is indicated by <T; end>)

— <T,abort> indicates when a transaction error occurred

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

38

ARIES: Example 1

* Analysis
transID | lastLSN pagelD | recLSN
T1 10 P5 10
T3 60 P3 20
P1 50
* Redo

— LSN 10; LSN 20; LSN 50; LSN 60

* Undo
— LSN 60; LSN 50; LSN 10
— LSN 70: CLR Undo T3 LSN 60, undonextLSN = 50

— LSN 80: CLR Undo T3 LSN 50, undonextLSN = NULL, T3 end
— LSN 90: CLR Undo T1 LSN 10, undonextLSN = NULL, T1 end

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

LSN

10

20

30

40

50

60

LOG

update: T1 writes PS5
update: T2 writes P3
T2 commit

T2 end

update: T3 writes P1
update: T3 writes P3

CRASH, RESTART

39

ARIES: Example 2

* Analysis
transiD | lastLSN
T1 70
T3 60
e Redo

pagelD | recLSN
P5 20
P3 30

— LSN 20; LSN 30; LSN 60

* Undo

— LSN 60; LSN 20

LSN
00

10

20

30

40

50

60

70

— LSN 80: CLR Undo T3 LSN 60, undonextLSN = NULL, T3 end
— LSN 90: CLR Undo T1 LSN 20, undonextLSN = NULL, T1 end

IST, MEIC/MECD/METI

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

LOG

begin_checkpoint
end_checkpoint
update: T1 writes PS
update: T2 writes P3
T2 commit

T2 end

update: T3 writes P3
T1 abort

CRASH, RESTART

40

ARIES: Example 3

* Analysis
LSN LOG
transID | lastLSN pagelD | recLSN 00 — begin_checkpoint
T1 80 P1 20 10 — end_checkpoint
13 90 P2 30 20 — update: T1 writes P1
P3 40 30 —'— update: T2 writes P2
P> 80 40 — update: T3 writes P3
* Redo :

50 = T2 commit

— LSN 20; LSN 30; LSN 40; LSN 60; LSN 80 :
60 — update: T3 writes P2

o UndO 70 — T2 end
— LSN 80; LSN 60; LSN 40; LSN 20 80 —— update: T1 writes PS
— LSN 100: CLR Undo T1 LSN 80, undonextLSN = 20 90 — T3 abort
— LSN 110: CLR Undo T3 LSN 60, undonextLSN = 40 M CRASH, RESTART

— LSN 120: CLR Undo T3 LSN 40, undonextLSN = NULL, T3 end
— LSN 130: CLR Undo T1 LSN 20, undonextLSN = NULL, T1 end

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

ARIES: Example 4

 LSN 30: T1 aborts LSN LOG
00,05 === begin_checkpoint, end_checkpoint
e LSN40: CLRUndo T1 LSN 10, T1 end cE_checipoint, end_checkpomn
10 — date: T1 writes P5
* (No crash yet) j Updater Thwrltes T T
20 —'— update: T2 writes P3
30 — T1 abort prevl. SN
40,45 —— CLR: Undo T1LSN 10, T1 end
50 — update: T3 writes P1
60 — update: T2 writes P5 prevLSN
X CRASH, RESTART
70 — CLR: Undo T2ZLSN 60 ——~
80,85 —— CLR: Undo T3 LSN 50, T3 end
X CRASH, RESTART

90,95 == CLR: Undo T2 LSN 20, T2 end

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

ARIES: Example 4 (Cont.)

e (First crash) Analysis

transiD | lastLSN
T2 60
T3 50
e Redo

— LSN 10; LSN 20; LSN 40 (CLR); LSN 50; LSN 60

* Undo

pagelD | recLSN
P5 10
P3 20
P1 50

— LSN 60; LSN 50; Crash!!' X

— LSN 70: CLR Undo T2 LSN 60, undonextLSN = 20
— LSN 80: CLR Undo T3 LSN 50, undonextLSN = NULL, T3 end

IST, MEIC/MECD/METI

LSN

00, 05

10

20

30

40, 45

50

60

70

80, 85

90, 95

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

LOG
begin_checkpoint, end checkpoint
update: T1 writes P5 ‘\
update: T2 writes P3
T1 abort prevL.SN
CLR: Undo T1 LSN 10, T1 end
update: T3 writes P1
update: T2 writes P5 pEVLSN
CRASH, RESTART
CLR: Undo T2 LSN 60 7= 1 4N
CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LLSN 20, T2 end

43

ARIES: Example 4 (Cont.)

— LSN 10; LSN 20; LSN 40 (CLR); LSN 50; LSN 60;
LSN 70 (CLR); LSN 80 (CLR);

X CRASH, RESTART

70 — CLR: Undo T2 LLSN 60 indonextLSN

80,85 —— CLR: Undo T3 LSN 50, T3 end

* (Second crash) Analysis N e oo
4 H)
i 00, 05 === begin_checkpoint, end_checkpoint i
1 ; 1
transiD | lastLSN pagelD | recLSN L0 —— update: T1 writes P ‘\ i
1 H 1
1 H 1
I :
T2 | 70 P> 10 i 20 =t update: T2 writes P3 i
1 : 1
P3 20 | : I
I 30 = TI1 abort !
: i prevLSN !
P1 50 i i
' 40,45 =+ CLR:Undo T1LSN 10, T1 end !
I : i
1 H 1
i 50 = update: T3 writes P1 i
1 i 1
1 . 1
1 : . _ !
° R ed 0o i 60 update: T2 writes P5 prevLSN i
| |
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1

X CRASH, RESTART

* Undo 90,95 = CLR: Undo T2 LSN 20, T2 end
— (LSN 70); LSN 20

— LSN 90: CLR Undo T2 LSN 20, undonextLSN = NULL, T2 end

Ve

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Failure with Loss of Nonvolatile Storage

* So far we assumed no loss of non-volatile storage
* Technique similar to checkpointing used to deal with loss of non-
volatile storage
— Periodically dump the entire content of the database to stable storage

— No transaction may be active during the dump procedure; a procedure
similar to checkpointing must take place

e Output all log records currently residing in main memory onto stable
storage.

e Output all buffer blocks onto the disk.
* Copy the contents of the database to stable storage.
e Output a record <dump> to log on stable storage.
* To recover from disk failure
— restore database from most recent dump.

— Consult the log and redo all transactions that committed after the dump

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Remote Backup Systems

 Remote backup systems provide high availability by allowing
transaction processing to continue even if the primary site is
destroyed.

primary

S

IST, MEIC/MECD/METI

log
records

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

backup

S e

46

Remote Backup Systems (Cont.)

* Detection of failure: Backup site must detect when primary site
has failed

— To distinguish primary site failure from link failure, maintain several
communication links between the primary and the remote backup.

— Heart-beat messages

 Transfer of control:

— To take over control, backup site first performs recovery using its copy of
the database and all the log records it has received from the primary.

* Thus, completed transactions are redone and incomplete transactions
are rolled back.

— When the backup site takes over processing, it becomes the new primary

— To transfer control back to old primary when it recovers, old primary must
receive redo logs from the old backup and apply all updates locally.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 47

Remote Backup Systems (Cont.)

* Time to recover:

— To reduce delay in takeover, backup site periodically processes the redo
log records (in effect, performing recovery from previous database state),
performs a checkpoint, and can then delete earlier parts of the log.

* Hot-Spare configuration permits very fast takeover:
— Backup continually processes redo log record as they arrive, applying the

updates locally.
— When failure of the primary is detected the backup rolls back incomplete
transactions, and is ready to process new transactions.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

48

Remote Backup Systems (Cont.)

* Time to commit;:

— Ensure durability of updates by delaying transaction commit until update
is logged at backup

* Avoid this delay by permitting lower degrees of durability:

— One-safe: commit as soon as transaction's commit log record is written at
primary
Problem: updates may not arrive at backup before it takes over.

— Two-very-safe: commit when transaction's commit log record is written at
primary and backup

Reduces availability since transactions cannot commit if either site
fails.

— Two-safe: proceed as in two-very-safe if both primary and backup are
active. If only the primary is active, the transaction commits as soon as is
commit log record is written at the primary.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

49

	Slide 1: Data Administration in Information Systems
	Slide 2: Database recovery
	Slide 3: Database recovery
	Slide 4: Failure Classification
	Slide 5: Recovery Algorithms
	Slide 6: Storage Structure
	Slide 7: Data Access
	Slide 8: Data Access (Cont.)
	Slide 9: Example of Data Access
	Slide 10: Recovery and Atomicity
	Slide 11: Log-Based Recovery
	Slide 12: Transaction Commit
	Slide 13: Database Modification
	Slide 14: Database Modification Example
	Slide 15: Recovering from Failure
	Slide 16: Undo and Redo Operations
	Slide 17: Recovering from Failure (Cont.)
	Slide 18: Recovery Example
	Slide 19: Checkpoints
	Slide 20: Example of Checkpoints
	Slide 21: Checkpoints (Cont.)
	Slide 22: Recovery Algorithm
	Slide 23: Recovery Algorithm (Cont.)
	Slide 24: Recovery Algorithm (Cont.)
	Slide 25: Example of Recovery
	Slide 26: Log Record Buffering
	Slide 27: Log Record Buffering (Cont.)
	Slide 28: Log Record Buffering (Cont.)
	Slide 29: ARIES (Algorithm for Recovery and Isolation Exploiting Semantics)
	Slide 30: ARIES
	Slide 31: ARIES (Cont.)
	Slide 32: Data Structures in ARIES
	Slide 33: Checkpoints in ARIES
	Slide 34: Recovery in ARIES
	Slide 35: Analysis phase
	Slide 36: Redo phase
	Slide 37: Undo phase
	Slide 38: ARIES: Examples
	Slide 39: ARIES: Example 1
	Slide 40: ARIES: Example 2
	Slide 41: ARIES: Example 3
	Slide 42: ARIES: Example 4
	Slide 43: ARIES: Example 4 (Cont.)
	Slide 44: ARIES: Example 4 (Cont.)
	Slide 45: Failure with Loss of Nonvolatile Storage
	Slide 46: Remote Backup Systems
	Slide 47: Remote Backup Systems (Cont.)
	Slide 48: Remote Backup Systems (Cont.)
	Slide 49: Remote Backup Systems (Cont.)

