Data Administration in Information Systems

Transactions and concurrency

uery optimization

SEVENTH EDITION

Database System Concepts

= Abraham Silbe'rscihat.z'f
~ Henry F.Korth -

]
Education

Chapter 16 Query Optimization

16.1 Overview 743

16.2 Transformation of Relational
Expressions 747

16.3 Estimating Statistics of Expression
Results 757

16.4 Choice of Evaluation Plans 766

Contents

16.5 Materialized Views 778
16.6 Advanced Topics in Query
Optimization 783
16.7 Summary 787
Exercises 789
Further Reading 794

PART SEVEN H TRANSACTION MANAGEMENT

Chapter 17 Transactions

17.1 Transaction Concept 799

17.2 A Simple Transaction Model 801

17.3 Storage Structure &04

17.4 Transaction Atomicity and Durability 805
17.5 Transaction Isolation 807

17.6 Serializability 812

17.7 Transaction Isolation and Atomicity &19

Chapter 18 Concurrency Control

18.1 Lock-Based Protocols 833

18.2 Deadlock Handling 849

18.3 Multiple Granularity 853

18.4 Insert Operations, Delete Operations, and
Predicate Reads 857

18.5 Timestamp-Based Protocols 861

18.6 Validation-Based Protocols 866

18.7 Multiversion Schemes 869

Chapter 19 Recovery System

19.1 Failure Classification 907

19.2 Storage 908

19.3 Recovery and Atomicity 912

19.4 Recovery Algorithm 922

19.5 Buffer Management 926

19.6 Failure with Loss of Non-Volatile
Storage 930

19.7 High Availability Using Remote Backup
Systems 931

17.8 Transaction Isolation Levels 821
17.9 Implementation of Isolation Levels 823
17.10 Transactions as SQL Statements 826
17.11 Summary 828

Exercises 831

Further Reading 834

18.8 Snapshot Isolation 872

18.9 Weak Levels of Consistency in
Practice 880

18.10 Advanced Topics in Concurrency
Control 883

18.11 Summary 894
Exercises 899
Further Reading 904

19.8 Early Lock Release and Logical Undo
Operations 935
19.9 ARIES 941
19.10 Recovery in Main-Memory Databases 947
19.11 Summary 948
Exercises 952
Further Reading 936

xi

IST, MEIC/MECD/METI

Administragdo de Dados e Sistemas de Informag&o (ADSI) - 2022/2023 - 22 Sem

Transaction Concept

* A transaction is a unit of program execution that accesses and
possibly updates various data items.

 E.g., transaction to transfer 50€ from account A to account B:
read(A)

A=A-50

write(A)

read(B)

B:=B+50

write(B)

o v bk wbh e

* Two main issues to deal with:
— Concurrent execution of multiple transactions
— Failures of various kinds, such as hardware failures and system crashes

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Example of Fund Transfer

* Transaction to transfer 50€ from account A to account B:
1. read(A)

A=A-50

write(A)

read(B)

B:=B+50
6. write(B)

* Atomicity requirement

kRN

— |If the transaction fails after step 3 and before step 6, money will be "lost"
leading to an inconsistent database state

— The system should ensure that updates of a partially executed transaction
are not reflected in the database

* Durability requirement — once the user has been notified that the
transaction has completed (i.e., the transfer of the 50€ has taken place), the
updates to the database by the transaction must persist even if there are
software or hardware failures.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Example of Fund Transfer (Cont.)

* Consistency requirement in above example:

The sum of A and B is unchanged by the execution of the transaction

* In general, consistency requirements include

Explicitly specified integrity constraints such as primary keys and foreign
keys
Implicit integrity constraints

* e.g., sum of balances of all accounts, minus sum of loan amounts must
equal value of cash-in-hand

A transaction must see a consistent database

During transaction execution the database may be temporarily
inconsistent

When the transaction completes successfully the database must be
consistent

* Erroneous transaction logic can lead to inconsistency

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Example of Fund Transfer (Cont.)

* Isolation requirement — if between steps 3 and 6, another
transaction T2 is allowed to access the partially updated
database, it will see an inconsistent database (the sum A + B will
be less than it should be).

T1 T2

1. read(A)
2. A:=A-50

3. write(A)
read(A), read(B), print(A+B)

4. read(B)
5. B:=B+50
6. write(B)

* J|solation can be ensured trivially by running transactions serially
— i.e. one after the other

 However, executing multiple transactions concurrently has
significant benefits

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

ACID Properties

A transaction is a unit of program execution that accesses and possibly
updates various data items. To preserve the integrity of data the database
system must ensure:

Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

Isolation. Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing
transactions. Intermediate transaction results must be hidden from
other concurrently executed transactions.

— That s, for every pair of transactions T;and T, it appears to T, that either T,
finished execution before T; started, or T: started execution after T, finished.

Durability. After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Transaction State

* Active — the initial state; the transaction stays in this state while it
IS executing

* Partially committed — after the final statement has been
executed.

* Failed — after the discovery that normal execution can no longer
proceed.

* Aborted — after the transaction has been rolled back and the
database restored to its state prior to the start of the transaction.
Two options after it has been aborted:

— Restart the transaction
* Can be done only if no internal logical error
— Kill the transaction

Committed — after successful completion.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Transaction State (Cont.)

partially

committed

aborted

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Concurrent Executions

 Multiple transactions are allowed to run concurrently in the
system. Advantages are:

— Increased processor and disk utilization, leading to better transaction
throughput

e E.g., one transaction can be using the CPU while another is reading
from or writing to the disk

— Reduced average response time for transactions: short transactions need
not wait behind long ones.

e Concurrency control schemes — mechanisms to achieve isolation

— i.e. to control the interaction among the concurrent transactions in order
to prevent them from destroying the consistency of the database

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

10

Schedules

* Schedule — a sequences of instructions that specify the
chronological order in which instructions of concurrent
transactions are executed

— A schedule for a set of transactions must consist of all instructions of those
transactions

— Must preserve the order in which the instructions appear in each
individual transaction.

* A transaction that successfully completes its execution will have a
commit instruction as the last statement

— By default, a transaction is assumed to execute a commit instruction as its
last step

* A transaction that fails to successfully complete its execution will
have an abort instruction as the last statement

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 11

Schedule 1

* Let T, transfer 50 € from A to B, and T, transfer 10% of the

balance from A to B.

* Aserial schedule in which T, is followed by T,:

T, T,

read (A)

A:=A-50

write (A)

read (B)

B:=B+50

write (B)

commit
read (A)
temp :=A*0.1
A=A -temp
write (A)
read (B)
B =B + temp
write (B)
commit

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

12

Schedule 2

* Aserial schedule where T, is followed by T,

T, T,

read (A)
temp :=A*0.1
A=A -temp
write (A)
read (B)
B =B+ temp
write (B)
commit

read (A)

A=A-50

write (A)

read (B)

B:=B+50

write (B)

commit

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Schedule 3

* Let T, and T, be the transactions defined previously. The following
schedule is not a serial schedule, but it is equivalent to Schedule 1

T, T, T I,
read (A) read (A)
A=A-50 A:=A-50
write (A) write (A)
read (A) read (B)
temp =A% 0.1 B:=B+50
A=A -temp write (B)
write (A) commit
read (B) read (A)
B :=B+50 temp :=A*0.1
write (B) A=A-temp
commit write (A)
read (B) read (B)
B =B + temp B =B + temp
write (B) write (B)
commit commit

* In Schedules 1, 2 and 3, the sum A + B is preserved.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 14

Schedule 4

* The following concurrent schedule does not preserve the value of
A+B

T T,

read (A)

A=A-50
read (A)
temp :=A*0.1
A:=A-temp
write (A)
read (B)

write (A)

read (B)

B:=B+50

write (B)

commit
B =B+ temp
write (B)
commit

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Serializability

e Basic Assumption — Each transaction preserves database
consistency.

* Thus, serial execution of a set of transactions preserves database
consistency.

* A concurrent schedule is serializable if it is equivalent to a serial
schedule.

 We focus on a particular form of schedule equivalence called
conflict serializability

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 16

Conflicting Instructions

* There is a conflict between transactions T; and T; if and only if
there exists some item Q accessed by both transactions, and at
least one of them writes Q.

1. T;:read(Q) T;:read(Q) No conflict

2. T;:read(Q) T.:write(Q) Conflict

3. T;:write(Q) T :read(Q) Conflict

4. T,:write(Q) T,:write(Q) Conflict

* Intuitively, a conflict between T; and T; forces a (logical) temporal
order between them.

* If the instructions of T;and T; are consecutive in a schedule and
they do not conflict, their results would remain the same even if
they had been interchanged in the schedule.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Conflict Serializability

* If aschedule S can be transformed into a schedule S’ by a series
of swaps of non-conflicting instructions, we say that S and S' are

conflict equivalent.
 We say that a schedule S is conflict serializable if it is conflict
equivalent to a serial schedule

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

18

Conflict Serializability (Cont.)

 Schedule 3 can be transformed into Schedule 6, a serial schedule
where T, follows T,, by series of swaps of non-conflicting
instructions. Therefore, Schedule 3 is conflict serializable.

T T,
read (A)
write (A)
read (A)
write (A)
read (B)
write (B)
read (B)
write (B)
Schedule 3

T T,

read (A)

write (A)

read (B)

write (B)
read (A)
write (A)
read (B)
write (B)

Schedule 6

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

19

Conflict Serializability (Cont.)

 Example of a schedule that is not conflict serializable:

T T,
read (Q)
write (Q)
write (Q)

— We are unable to swap instructions in the above schedule to obtain either
the serial schedule < T;, T, >, or the serial schedule< T,, T; >.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 20

Testing for Serializability

* Consider some schedule of a set of transactions T, T,, ..., T,

* Precedence graph — a direct graph where the vertices are the
transactions (names).

* We draw an arc from T; to T; if the two transactions conflict, and
T accessed the data item on which the conflict arose earlier.

* We may label the arc by the item that was accessed.
 Example of a precedence graph

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 21

Test for Conflict Serializability

e A schedule is conflict serializable if and
only if its precedence graph is acyclic.

* If precedence graph is acyclic, the
serializability order can be obtained by
a linear sorting of the graph.

— This is a linear order consistent with the
partial order of the graph.

— For example, a serializability order for
schedule (a) could be (b) or (c).

OGO

(b)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

22

Test for Conflict Serializability: Examples

* The precedence graph for this schedule does not contain cycles

— |t is conflict serializable

T T,

read (A)

A=A-50

write (A)
read (A)
temp =A*0.1
A=A -temp
write (A)

read (B)

B=B+50

write (B)

commit
read (B)
B =B+ temp
write (B)
commit

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Test for Conflict Serializability: Examples

* The precedence graph for this schedule contains a cycle

— It is not conflict serializable

T T,

read (A)

A=A-50
read (A)
temp =A*0.1
A:=A-temp
write (A)
read (B)

write (A)

read (B)

B:=B+50

write (B)

commit
B =B+ temp
write (B)
commit

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Simplified view of transactions

 We ignore operations other than read and write instructions

 We assume that transactions may perform arbitrary

computations on data in local buffers in between reads and
writes.

* Our simplified schedules consist of only read and write
instructions.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 25

Other Notions of Serializability

 The schedule below produces same outcome as the serial
schedule < T, T; >, yet is not conflict serializable.

T T

read (A)

A:=A-50

write (A)
read (B)
B=B-10
write (B)

read (B)

B:=B+50

write (B)
read (A)
A=A+10
write (A)

— Determining such equivalence requires analysis of operations other than
read and write.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Recoverable Schedules

Need to address the effect of transaction failures on concurrently
running transactions.

* Recoverable schedule — if transaction T; reads a data item
previously written by a transaction T;, then the commit of T,
must appear after the commit of T,

* The following schedule is not recoverable:

T T
read (A)
write (A)
read (A)
commit
read (B)

— If Ty rolls back, T, has read an inconsistent database state.
— Database must ensure that schedules are recoverable.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 27

Cascading Rollbacks

e (Cascading rollback — a single transaction failure leads to a series
of transaction rollbacks. Consider the following schedule where

none of the transactions has yet committed (so the schedule is
recoverable):

Ty Ty Ty
read (A)
read (B)
write (A)
read (A)
write (A)
read (A)
abort

— If T, fails, T,; and T, must also be rolled back.

— This can lead to the undoing of a significant amount of work.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 28

Cascadeless Schedules

e (Cascadeless schedules — cascading rollbacks cannot occur.

— If transaction T, reads a data item previously written by a transaction T,
then the read of 7, must appear after the commit of T..

* Every cascadeless schedule is also recoverable

— Because if the read of T; appears after the commit of T, then the commit
of T; will also appear after the commit of T..

 |tis desirable to restrict the schedules to those that are
cascadeless

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

29

Concurrency Control

* A database must provide a mechanism that will ensure that all
possible schedules are
— serializable, and
— recoverable, preferably cascadeless

* If only one transaction executes at a time, this generates serial
schedules, but provides a poor degree of concurrency

— Concurrency-control schemes allow concurrency while trying to comply
with the requirements above.

e Testing a schedule for serializability after it has been executed is
too late!

* Goal —develop concurrency control protocols that will assure
serializability.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 30

Concurrency Control vs. Serializability Tests

* Concurrency control protocols allow concurrent schedules, but
ensure that the schedules are serializable, recoverable, and
preferably cascadeless.

 Concurrency control protocols do not have access to the
precedence graph until the transactions are finished.

— Therefore, a protocol imposes a discipline that avoids non-serializable
schedules (more about this later).

* Different concurrency control protocols provide different
tradeoffs between the amount of concurrency they allow and the
amount of overhead that they incur.

* Tests for serializability help us understand why a concurrency
control protocol is correct.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 31

Weak Levels of Consistency

 Some applications are willing to live with weak levels of
consistency, allowing schedules that are not serializable

— e.g. aread-only transaction that wants to get an approximate total balance
of all accounts

— e.g. database statistics computed for query optimization can be
approximate

— such transactions need not be serializable with respect to other
transactions

* Tradeoff between accuracy and performance

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

32

Levels of Consistency in SQL

Serializable — ensures serializable execution.
Repeatable read — only committed records to be read.

— Repeated reads of same record must return same value.

— However, a transaction may not be serializable; it may find some records
inserted by a transaction but not find others.

Read committed — only committed records can be read.

— Successive reads of a record may return different (committed) values.

Read uncommitted — even uncommitted records may be read.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

33

Levels of Consistency in SQL (Cont.)

. Non-repeatable Phantom
Isolation level
reads reads
Serializable no no no
Repeatable read no no yes
Read committed no yes yes
Read uncommitted yes yes yes

* Dirty reads: the transaction can see the changes being done by other running
transactions which have not commited yet.

* Non-repeatable read: the data in a record may appear to change due to other
transactions that have committed in the meantime.

 Phantom reads: the number of records in a table may appear to change due
to other transactions that have committed in the meantime.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 34

Levels of Consistency in SQL (Cont.)

 Lower degrees of consistency useful for gathering approximate
information about the database

* Some systems do not ensure serializable schedules by default
— Default isolation level is typically read committed or repeatable read

* Some systems have additional isolation levels
— Snapshot isolation (not part of the SQL standard)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

35

Transaction Definition in SQL

* In SQL, a transaction begins implicitly

— By default, each statement is a transaction that commits upon successful
execution.

— "Auto-commit" can be turned off, if desired.
* Explicit transactions start with begin transaction and end with
commit or rollback
— In most systems, the transaction is rolled back automatically upon error.
 The isolation level can be changed before the start of a new

transaction
— With the command set transaction isolation level ...

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

36

Implementation of Isolation Levels

* Locking
— Lock on entire database vs. lock on items
— How long to hold lock?
— Shared vs. exclusive locks

* Timestamps
— Transaction timestamp assigned e.g. when a transaction begins
— Data items store two timestamps
* Read timestamp
* Write timestamp
— Timestamps are used to detect out of order accesses

* Multiple versions of each data item

— Allow transactions to read from a "snapshot" of the database

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

37

Lock-Based Protocols

A lock is a mechanism to control concurrent access to a data item
Data items can be locked in two modes:

1. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

Lock requests are made to concurrency-control manager.
Transaction can proceed only after request is granted.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

38

Lock-Based Protocols (Cont.)

* Lock-compatibility matrix

true false

X | false | false

* A transaction may be granted a lock on an item if the requested
lock is compatible with locks already held on the item by other
transactions

* Any number of transactions can hold shared locks on an item,

e Butif any transaction holds an exclusive on the item no other
transaction may hold any lock on the item.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

39

Lock-Based Protocols (Cont.)

Example of a transaction performing locking:

T,: lock-S(A)
read(A)
unlock(A)

lock-S(B)
read(B)
unlock(B)

display(A+B)

Locking as above is not sufficient to guarantee serializability

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

40

Schedule With Lock Grants

 This schedule is not
serializable

* A locking protocol is a set
of rules followed by all
transactions while
requesting and releasing
locks.

* Locking protocols enforce
serializability by restricting
the set of possible
schedules.

IST, MEIC/MECD/METI

T, T, concurrency-control manager
lock-X(B)
grant-X(B, T))
read(B)
B:=B-50
write(B)
unlock(B)
lock-S(A4)
grant-S(4, 75)
read(A4)
unlock(A4)
lock-S(B)
grant-S(B, T,)
read(B)
unlock(B)
display(4 + B)
lock-X(A)
grant-X(4, 7;)
read(4)
A:=A4+50
write(4)
unlock(A4)

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

41

Schedule With Lock Grants (Cont.)

e Grants will be omitted in the next slides

— Assume grant happens just before the next
instruction in the transaction

IST, MEIC/MECD/METI

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

T, T,

lock-X(B)

read(B)

B:=B-50

write(B)

unlock(B)
lock-S(A)
read(A)
unlock(A)
lock-S(B)
read(B)
unlock(B)
display(4 + B)

lock-X(A)

read(4)

A=A4+50

write(A4)

unlock(A4)

42

Deadlock

* Consider the partial schedule

T, T,

lock-X(B)

read(B)

B:=B-50

write(B)
lock-S(A)
read(A)
lock-S(B)

lock-X(A)

* Neither T; nor T, can make progress

— executing lock-S(B) causes T, to wait for T, to release its lock on B, while
executing lock-X(A) causes T, to wait for T, to release its lock on A.

 Such a situation is called a deadlock.

— To break the deadlock, one of T; or T, must be rolled back and its locks
released.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

43

Deadlock (Cont.)

* The potential for deadlock exists in most locking protocols.

e Starvation is also possible if concurrency control manager is
badly designed. For example:

— A transaction may be waiting for an X-lock on an item, while a sequence of
other transactions request and are granted an S-lock on the same item.

— The same transaction is repeatedly rolled back due to deadlocks.

* Concurrency control manager can be designed to prevent
starvation.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

44

The Two-Phase Locking Protocol

A protocol which ensures conflict-serializable schedules

Phase 1: Growing Phase

— Transaction may obtain locks n
— Transaction may not release locks Eo’
* Phase 2: Shrinking Phase
— Transaction may release locks T

Time
— Transaction may not obtain locks

* The protocol assures serializability

— It can be proved that the transactions can be serialized in the order of
their lock points (i.e. the point where a transaction acquired its final lock)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 45

The Two-Phase Locking Protocol (Cont.)

 Two-phase locking does not prevent deadlocks

* Extensions to basic two-phase locking needed to ensure
recoverability and avoid cascading rollbacks

— Strict two-phase locking: a transaction must hold all its exclusive locks till
it commits/aborts.

* Ensures recoverability and avoids cascading rollbacks

— Rigorous two-phase locking: a transaction must hold all locks till
commit/abort.

* Transactions can be serialized in the order in which they commit.

* Most databases implement rigorous two-phase locking but refer
to it simply as two-phase locking

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

46

Locking Protocols

* Given alocking protocol (such as two-phase locking)

— A schedule S is legal under a locking protocol if it can be generated by a
set of transactions that follow the protocol

— A protocol ensures serializability if all legal schedules under that protocol
are serializable

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

47

Lock Conversions

 Two-phase locking protocol with lock conversions:
— Growing Phase:

e can acquire a lock-S on item

e can acquire a lock-X on item

e can convert a lock-S to a lock-X (upgrade)
— Shrinking Phase:

* can release a lock-S

* can release a lock-X
* can convert a lock-X to a lock-S (downgrade)

* This protocol ensures serializability

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

48

Automatic Acquisition of Locks

* Atransaction T issues the standard read/write instruction,
without explicit locking calls.

 The operation read(D) is processed as:

if T.hasalockon D
then
read(D)
else begin
if needed, wait until no other transaction has a lock-X on D
grant T, a lock-S on D

read(D)
end

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

49

Automatic Acquisition of Locks (Cont.)

* The operation write(D) is processed as:

if T, has a lock-Xon D
then
write(D)
else begin
if needed, wait until no other transaction has any lock on D
if T, has alock-Son D
then
upgrade lock on D to lock-X
else
grant T; a lock-X on D
write(D)
end;

 Alllocks are released after commit or abort

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

50

Graph-Based Protocols

* Graph-based protocols are an alternative to two-phase locking

* Impose a partial ordering > onthesetD=1{d,, d,,..., d,} of all
data items.

— If d;— d; then any transaction accessing both d; and d; must access d,
before accessing d..

— Implies that the set D may now be viewed as a directed acyclic graph,
called a database graph.

* The tree-protocol is a simple kind of graph protocol.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

51

Tree Protocol

* Only exclusive locks are considered.
* The first lock may be on any data item.

e Subsequently, a data item can be locked only if its parent is
currently locked by the same transaction.

* Dataitems may be unlocked at any time.

e A dataitem that has been locked and unlocked cannot be
subsequently re-locked by the same transaction.

o
@@
Ll @

@ ® ©
O

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

52

Graph-Based Protocols (Cont.)

* The tree protocol ensures conflict serializability as well as
freedom from deadlock

* Unlocking may occur earlier in the tree-locking protocol than in
the two-phase locking protocol
— Shorter waiting times, and increase in concurrency
— Protocol is deadlock-free, no rollbacks are required
* Drawbacks
— Protocol does not guarantee recoverable or cascadeless schedules
* Need to introduce commit dependencies to ensure recoverability
— Transactions may have to lock data items that they do not access

* increased locking overhead, and additional waiting time
* potential decrease in concurrency

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

53

Deadlock Handling

* A deadlock occurs if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

T, 1,

lock-X(B)

read(B)

B:=B-150

write(B)
lock-S(A)
read(4)
lock-S(B)

lock-X(A)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Deadlock Handling (Cont.)

* Deadlock prevention protocols ensure that the system does not
enter into a deadlock state. Some prevention strategies:

— Require that each transaction locks all its data items before it begins
execution (pre-declaration).

— Impose partial ordering of all data items and require that a transaction can
lock data items only in the order specified by the partial order (graph-
based protocol).

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

55

More Deadlock Prevention Strategies

* Wait-die scheme
— Older transaction may wait for younger one to release data item.

— Younger transactions never wait for older ones; they are rolled back
instead.

— A transaction may die several times before acquiring a lock

e Wound-wait scheme

— Older transaction wounds (forces rollback) of younger transaction instead
of waiting for it.

— Younger transactions may wait for older ones.
— Fewer rollbacks than wait-die scheme.
* |n both schemes, a rolled back transactions is restarted with its

original timestamp.

— Ensures that older transactions have precedence over newer ones, and
starvation is thus avoided.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

56

Deadlock prevention (Cont.)

e Timeout-based schemes:

— A transaction waits for a lock only for a specified amount of time. After
that, the wait times out and the transaction is rolled back.

— Ensures that deadlocks get resolved by timeout if they occur

— Simple to implement

— But may roll back transaction unnecessarily in absence of deadlock
 Difficult to determine good value of the timeout interval.

— Starvation is also possible

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Deadlock Detection

e Wait-for graph
— Vertices: transactions

— Edge from T, —>T,. : if T; is waiting for a lock held in conflicting mode by T;

 The system is in a deadlock state if and only if the wait-for graph
has a cycle.

* Invoke a deadlock-detection algorithm periodically to look for

@‘: - e‘?ﬁ

Wait-for graph without a cycle Wait-for graph with a cycle

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

58

Deadlock Recovery

e When deadlock is detected:

— Some transaction will have to rolled back (made a victim) to break
deadlock cycle.

e Select that transaction as victim that will incur minimum cost
— Rollback — determine how far to roll back transaction
* Total rollback: Abort the transaction and then restart it.
* Partial rollback: Roll back victim transaction only as far as necessary to
release locks that another transaction in cycle is waiting for
 Starvation can happen

— One solution: oldest transaction in the deadlock set is never chosen as
victim

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

59

Multiple Granularity

* Allow data items to be of various sizes and define a hierarchy of
data granularities, where the small granularities are nested
within larger ones

* The hierarchy can be represented graphically as a tree (but don't
confuse with tree-protocol)

* Granularity of locking (level in tree where locking is done):
— Fine granularity (lower in tree): high concurrency, high locking overhead
— Coarse granularity (higher in tree): low locking overhead, low concurrency

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 60

Example of Granularity Hierarchy

* The levels, starting from the coarsest (top) level can be
— database, area, file, record (as in the book)
— database, table, page, row (as in SQL Server)
— etc.

\ ORORNO

* When a transaction locks a node in S or X mode, it implicitly locks
all descendants in the same mode (S or X).

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 61

Intention Lock Modes

 |n addition to S and X lock modes, there are three additional lock
modes with multiple granularity:

— intention-shared (IS): indicates there are shared locks at lower levels of
the tree

— intention-exclusive (I1X): indicates there are exclusive or shared locks at
lowers level of the tree

— shared and intention-exclusive (SIX): a shared lock, with the possibility of
having exclusive or shared locks at lower levels of the tree.

With intention locks, a transaction does not need to search the
entire tree to determine whether it can lock a node.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

62

Multiple Granularity Locking Scheme

e Atransaction can lock nodes according to the following rules:
— The root of the tree is locked first in some mode (IS, IX, S, SIX, X).

If a node is locked in IS mode, its descendants can be locked in IS or S
mode.

If a node is locked in IX mode, its descendants can be locked in any mode.

If a node is locked in S mode, its descendants are implicitly locked in S
mode.

If a node is locked in SIX mode, its descendants are implicitly locked in S
mode, but can also be locked IX, SIX, or X mode.

If a node is locked in X mode, its descendants are implicitly locked in X
mode.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

63

Multiple Granularity Locking Scheme (Cont.)

e |n other words:

— Before requesting an IS or S lock on a node, all ancestor nodes must be
locked in IS or IX mode.

— Before requesting an IX, SIX or X lock on a node, all ancestor nodes must
be locked in IX or SIX mode.

* Leaf nodes are always locked in S or X mode

— There are no intention locks on leaves since they have no descendants.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

64

Multiple Granularity Locking Scheme (Cont.)

* Locks are acquired
— in root-to-leaf order

* Locks are released
— during the transaction, in leaf-to-root order
— at the end of the transaction, in any order

* Re-acquiring locks after they have been released is not allowed.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

65

Compatibility Matrix with Intention Lock Modes

 The procedure is the same for all concurrent transactions
— Locks will be granted according to the following compatibility matrix

IS IX S SIX X
IS true true true true false
IX true true false false false
S true false true false false
SIX true false false false false
X false false false false false

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Multiple Granularity Locking Scheme: Example

¢ T read(raz)

Multiple Granularity Locking Scheme: Example

¢ Ty write(rag)

Multiple Granularity Locking Scheme: Example

* T;:read(F,)

Multiple Granularity Locking Scheme: Example

* T, read(DB)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

70

Multiple Granularity Locking Scheme: Example

 These are compatible:
- T read(raz)
— T,:read(F,)
— T,: read(DB)

| s | x | s | six X

IS true true true true false
IX | true | true | false | false false
S true false true false false

SIX true false false false false
X false false false false false

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Multiple Granularity Locking Scheme: Example

 These are compatible:
- T read(raz)
— T,: write(r,)

IS IX S SIX X

IS true true true true false
IX true true false false false
S true false true false false
SIX true false false false false
X false false false false false

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Multiple Granularity Locking Scheme: Example

 These are not compatible:
— T,: write(r,)
— T,:read(F,)

IS IX S SIX X
IS true true true true false
IX true true false false false
S true false true false false
SIX true false false false false
X false false false false false

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Multiple Granularity Locking Scheme: Example

 These are not compatible:
— T,: write(r,)
— T,: read(DB)

IS IX S SIX X
IS true true true true false
IX true true false false false
S true false true false false
SIX true false false false false
X false false false false false

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Timestamp-Based Protocols

* Each transaction T, is issued a timestamp TS(T;) when it enters the
system.
— Each transaction has a unigque timestamp
— Newer transactions have timestamps greater than earlier ones

— Timestamp can be based on wall-clock time or logical counter

* Timestamp-based protocols manage concurrent execution such
that timestamp order = serializability order

* Several protocols based on timestamps

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 75

Timestamp-Ordering Protocol

The timestamp ordering (TSO) protocol

 Maintains for each data Q two timestamp values:

— W-timestamp(Q) is the largest timestamp of any transaction that executed
write(Q) successfully.

— R-timestamp(Q) is the largest timestamp of any transaction that executed
read(Q) successfully.

* Imposes rules on read and write operations to ensure that

— Any conflicting operations are executed in timestamp order
— Out of order operations cause transaction rollback

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

76

Timestamp-Ordering Protocol (Cont.)

* Suppose a transaction T. issues a read(Q)

If W-timestamp(Q) > TS(T), then T, needs to read a value of Q that
was already overwritten.

* Hence, the read operation is rejected, and T. is rolled back.

/

If W-timestamp(Q) < TS(T), then the read operation is executed, and
R-timestamp(Q) is set to

max(R-timestamp(Q), TS(T))).

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

77

Timestamp-Ordering Protocol (Cont.)
* Suppose that transaction T; issues write(Q).
If R-timestamp(Q) > TS(T), then the value of Q that T; is producing is

being written too late, it should have been written earlier.
* Hence, the write operation is rejected, and T is rolled back.

If W-timestamp(Q) > TS(T), then T, is attempting to write an obsolete
value of Q; a newer transaction has written a more recent value.

* Hence, this write operation is rejected, and T; is rolled back.

Otherwise, the write operation is executed, and W-timestamp(Q) is
set to TS(T)).

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

78

Example of Schedule Under TSO

 This schedule is valid under TSO

— Assume that initially:

* R-timestamp(A) = W-timestamp(A) =0
e R-timestamp(B) = W-timestamp(B) =0

— Assume TS(T,c) = 25 and TS(T,¢) = 26

IST, MEIC/MECD/METI

Ts T
read(B)
read(B)
B:=B-50
write(B)
read(A)
read(A4)
display(4 + B)
A=A4+ 50
write(A)

display(4 + B)

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

79

Example of Schedule Under TSO (Cont.)

* This schedule is not valid under TSO
— Assume that initially:
e R-timestamp(Q) = W-timestamp(Q) =0
— Assume TS(T,,) =27 and TS(T,g) = 28

Ty I3
read(Q)
write(Q)
write(Q)

— T,, is attempting to write an obsolete value, and is therefore rolled back.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

80

Thomas' Write Rule

 Modified version of the timestamp-ordering protocol in which
obsolete write operations may be ignored under certain
circumstances.

— When T, attempts to write data item Q, if W-timestamp(Q) > TS(T,), then T,
is attempting to write an obsolete value of Q.

— Rather than rolling back T; as the timestamp ordering protocol would have
done, this write operation can be ignored.

* Otherwise this protocol is the same as the timestamp ordering
protocol.

* Thomas' Write Rule allows greater potential concurrency.

— Allows some schedules that are not conflict-serializable.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

81

Another Example Under TSO

* A partial schedule for several data items for transactions with timestamps 1, 2,
3, 4, 5, with all R-timestamp = W-timestamp = O initially

Ty 05 I I I5
read (X)
read (Y)
read (Y)
write (Y)
write (Z)
read (Z)
read (Z)
abort
read (X)
read (W)
write (W)
abort
write (Y)
write (Z)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

82

IST, MEIC/MECD/METI

Correctness of Timestamp-Ordering Protocol

* The timestamp-ordering protocol guarantees serializability since
all the arcs in the precedence graph are of the form:

transaction
with smaller
timestamp

transaction
» with larger
timestamp

Thus, there will be no cycles in the precedence graph.

* Timestamp protocol prevents deadlock since no transaction ever
waits.

* But the schedule may not be cascade-free, and may not even be
recoverable.

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

83

Recoverability and Cascade Freedom

e Solution 1:

— A transaction is structured such that its writes are all performed at the end
of its processing

— All writes of a transaction form an atomic action; no transaction may
execute while a transaction is being written

— A transaction that aborts is restarted with a new timestamp

e Solution 2:
— Limited form of locking: wait for data to be committed before reading it

* Solution 3:
— Use commit dependencies to ensure recoverability

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

84

Multiversion Schemes

* Multiversion schemes keep old versions of data item to increase
concurrency. Several variants:
— Multiversion Timestamp Ordering
— Snapshot isolation

 Key ideas:

— Each successful write results in the creation of a new version of the data
item written.

— Use timestamps to label versions.

— When a read(Q) operation is issued, select an appropriate version of Q
based on the timestamp of the transaction issuing the read request, and
return the value of the selected version.

* Read requests never have to wait as an appropriate version is
returned immediately.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

85

Multiversion Timestamp Ordering

* Each data item Q has a sequence of versions <Q,, Q,,...., Q,,>.
* Each version Q, has its own timestamps:

= W-timestamp(Q,) — timestamp of the transaction that created (wrote)
version Q,

= R-timestamp(Q,) — largest timestamp of a transaction that successfully
read version Q,

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

86

Multiversion Timestamp Ordering (Cont.)

* Suppose that transaction T; issues a read(Q) or write(Q)
operation. Let Q, denote the version with the largest W-
timestamp < TS(T)).

If transaction T, issues a read(Q), then
* the value returned is version Q,
* If R-timestamp(Q,) < TS(T,), set R-timestamp(Q,) = TS(T))
If transaction T, issues a write(Q)
1. if R-timestamp(Q,) > TS(T)), then transaction T, is rolled back.
2. if W-timestamp(Q,) = TS(T), then version Q, is overwritten.
3. Otherwise, a new version Q, of Q is created, with W-timestamp(Q,) =

R-timestamp(Q,) = TS(T))

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

87

Multiversion Timestamp Ordering (Cont.)

* Observations
— Read requests never fail and never wait.

— A write by T is rejected if some newer transaction T that should read T;'s
version, has read a version created by a transaction older than T..

* Protocol guarantees serializability

— but does not ensure recoverability or cascadelessness

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

88

Snapshot Isolation

* Widely used in practice (incl. Oracle, PostgreSQL, SQL Server, etc.)
* Each transaction is given its own snapshot of the database

— Snapshot contains only committed values by previous transactions
— Reads and writes are performed on the snapshot
— Complete isolation between snapshots/transactions (before commit)

* Transactions that update the database have potential conflicts
— Updates are kept in the snapshot until the transaction commits
— Updates must be validated before the transaction is allowed to commit
— |If allowed to commit, updates in the snapshot are written to database
— If not allowed to commit, transaction is rolled back

* Read requests never wait

— Read from private snapshot

* Read-only transactions never fail

— No updates, allowed to commit

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

89

Snapshot Isolation: Example

* Atransaction T, executing with
snapshot isolation

— Takes snapshot of committed data
at start

— Always reads/modifies data in its
own snapshot

are not visible to T,

— Writes of T, complete when it
commits

IST, MEIC/MECD/METI

Updates of concurrent transactions

Ty T, T3
write(Y) : 1
commit
start
read(X) : 0
read(Y) : 1
write(X) : 2
write(Z) : 3
commit
read(Z) : O
read(Y) : 1
write(X) : 4
commit-req

rollback

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

90

Multiversioning in Snapshot Isolation

* In snapshot isolation, transactions are given two timestamps:
— StartTS(T)) is the time at which T, started
— CommitTS(T) is the time at which T, requested commit

* Data items have versions, each with a single timestamp:

— W-timestamp(Q,) which is equal to CommitTS(T,) of the transaction T, that
created version Q,

* When a transaction T, reads a data item Q
— It reads the latest version Q, such that W-timestamp(Q,) < StartTS(T)
— |t does not see any updates of transactions committed after StartTS(Tj)
— T, sees a snapshot of the database at the time when it started

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

91

Validation Steps in Snapshot Isolation

* Transactions T;and T are said to be concurrent if either:
— StartTS(T)) < StartTS(T;) < CommitTS(T,) or
— StartTS(T;) < StartTS(T;) < CommitTS(T))
* When two concurrent transactions update the same data item
— The two transactions operate in isolation in their own private snapshot
— Neither transaction sees the update made by the other
— If both transactions are allowed to commit and write to the database
* one update will be overwritten by the other: lost update

 Two approaches to prevent lost updates:
— First committer wins
— First updater wins

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

92

Validation Steps in Snapshot Isolation (Cont.)

* First committer wins

— T, requests commit and is assigned CommitTS(T))

— Suppose T, has updated a single data item Q

— If there is a version Q, with StartTS(T,) < W-timestamp(Q,) < CommitTS(T)
e A concurrent transaction has already written Q
e T.is not allowed commit, and must be rolled back

— If no such version Q, exists
* T.is allowed to commit, and its update is written to the database

— Can be generalized to multiple data items (check all of them)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Validation Steps in Snapshot Isolation (Cont.)

* First updater wins
— When T, attempts to update data item Q, it requests a write lock on Q

— If the lock is acquired: <
* If Q has been updated by a concurrent transaction, T is rolled back
* Otherwise, T, may proceed, while keeping the write lock on Q

— If the lock is being held by a concurrent transaction T,
* T;waits until T, commits or aborts

o |f T, aborts, T; acquires the lock, and do the same as before
* If T, commits, T; must be rolled back
— The write lock on Q is released when T, commits or aborts

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

94

Serializability in Snapshot Isolation

* Snapshot isolation does not ensure serializability
— T.reads A and B, updates A based on B
— T;reads A and B, updates B based on A
— Updates are on different objects; both are allowed to commit
* but the result is not equivalent to a serial schedule
— Schedule is not conflict-serializable

* Precedence graph has a cycle T, T,
i J
— This anomaly is called a write skew read(4)
read(B)
read(A4)
read(B)
A=B
B=A
write(4)
write(B)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

95

Serializable Snapshot Isolation

e Snapshot isolation tracks write-write conflicts, but does not track
read-write conflicts

— For example, when T; writes data item Q, and T, reads an earlier version of
Q, but T; should be serialized after T;

Serializable snapshot isolation (SSI) is an extension of snapshot
isolation that ensures serializability

— Tracks both write-write and read-write conflicts

— In theory, a transaction should be rolled back when a cycle is found

— In practice, a transaction is rolled back when it has both an incoming read-
write conflict and an outgoing read-write conflict

* may result in some unnecessary rollbacks, but it's simpler to check

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 96

	Slide 1: Data Administration in Information Systems
	Slide 2: Query optimization
	Slide 3: Transaction Concept
	Slide 4: Example of Fund Transfer
	Slide 5: Example of Fund Transfer (Cont.)
	Slide 6: Example of Fund Transfer (Cont.)
	Slide 7: ACID Properties
	Slide 8: Transaction State
	Slide 9: Transaction State (Cont.)
	Slide 10: Concurrent Executions
	Slide 11: Schedules
	Slide 12: Schedule 1
	Slide 13: Schedule 2
	Slide 14: Schedule 3
	Slide 15: Schedule 4
	Slide 16: Serializability
	Slide 17: Conflicting Instructions
	Slide 18: Conflict Serializability
	Slide 19: Conflict Serializability (Cont.)
	Slide 20: Conflict Serializability (Cont.)
	Slide 21: Testing for Serializability
	Slide 22: Test for Conflict Serializability
	Slide 23: Test for Conflict Serializability: Examples
	Slide 24: Test for Conflict Serializability: Examples
	Slide 25: Simplified view of transactions
	Slide 26: Other Notions of Serializability
	Slide 27: Recoverable Schedules
	Slide 28: Cascading Rollbacks
	Slide 29: Cascadeless Schedules
	Slide 30: Concurrency Control
	Slide 31: Concurrency Control vs. Serializability Tests
	Slide 32: Weak Levels of Consistency
	Slide 33: Levels of Consistency in SQL
	Slide 34: Levels of Consistency in SQL (Cont.)
	Slide 35: Levels of Consistency in SQL (Cont.)
	Slide 36: Transaction Definition in SQL
	Slide 37: Implementation of Isolation Levels
	Slide 38: Lock-Based Protocols
	Slide 39: Lock-Based Protocols (Cont.)
	Slide 40: Lock-Based Protocols (Cont.)
	Slide 41: Schedule With Lock Grants
	Slide 42: Schedule With Lock Grants (Cont.)
	Slide 43: Deadlock
	Slide 44: Deadlock (Cont.)
	Slide 45: The Two-Phase Locking Protocol
	Slide 46: The Two-Phase Locking Protocol (Cont.)
	Slide 47: Locking Protocols
	Slide 48: Lock Conversions
	Slide 49: Automatic Acquisition of Locks
	Slide 50: Automatic Acquisition of Locks (Cont.)
	Slide 51: Graph-Based Protocols
	Slide 52: Tree Protocol
	Slide 53: Graph-Based Protocols (Cont.)
	Slide 54: Deadlock Handling
	Slide 55: Deadlock Handling (Cont.)
	Slide 56: More Deadlock Prevention Strategies
	Slide 57: Deadlock prevention (Cont.)
	Slide 58: Deadlock Detection
	Slide 59: Deadlock Recovery
	Slide 60: Multiple Granularity
	Slide 61: Example of Granularity Hierarchy
	Slide 62: Intention Lock Modes
	Slide 63: Multiple Granularity Locking Scheme
	Slide 64: Multiple Granularity Locking Scheme (Cont.)
	Slide 65: Multiple Granularity Locking Scheme (Cont.)
	Slide 66: Compatibility Matrix with Intention Lock Modes
	Slide 67: Multiple Granularity Locking Scheme: Example
	Slide 68: Multiple Granularity Locking Scheme: Example
	Slide 69: Multiple Granularity Locking Scheme: Example
	Slide 70: Multiple Granularity Locking Scheme: Example
	Slide 71: Multiple Granularity Locking Scheme: Example
	Slide 72: Multiple Granularity Locking Scheme: Example
	Slide 73: Multiple Granularity Locking Scheme: Example
	Slide 74: Multiple Granularity Locking Scheme: Example
	Slide 75: Timestamp-Based Protocols
	Slide 76: Timestamp-Ordering Protocol
	Slide 77: Timestamp-Ordering Protocol (Cont.)
	Slide 78: Timestamp-Ordering Protocol (Cont.)
	Slide 79: Example of Schedule Under TSO
	Slide 80: Example of Schedule Under TSO (Cont.)
	Slide 81: Thomas' Write Rule
	Slide 82: Another Example Under TSO
	Slide 83: Correctness of Timestamp-Ordering Protocol
	Slide 84: Recoverability and Cascade Freedom
	Slide 85: Multiversion Schemes
	Slide 86: Multiversion Timestamp Ordering
	Slide 87: Multiversion Timestamp Ordering (Cont.)
	Slide 88: Multiversion Timestamp Ordering (Cont.)
	Slide 89: Snapshot Isolation
	Slide 90: Snapshot Isolation: Example
	Slide 91: Multiversioning in Snapshot Isolation
	Slide 92: Validation Steps in Snapshot Isolation
	Slide 93: Validation Steps in Snapshot Isolation (Cont.)
	Slide 94: Validation Steps in Snapshot Isolation (Cont.)
	Slide 95: Serializability in Snapshot Isolation
	Slide 96: Serializable Snapshot Isolation

