
Data Administration in Information Systems

Transactions and concurrency

Query optimization

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 2

Transaction Concept

• A transaction is a unit of program execution that accesses and
possibly updates various data items.

• E.g., transaction to transfer 50€ from account A to account B:
1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Two main issues to deal with:
– Concurrent execution of multiple transactions

– Failures of various kinds, such as hardware failures and system crashes

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 3

update account set balance = balance – 50 where account_number = x

update account set balance = balance + 50 where account_number = y

Example of Fund Transfer

• Transaction to transfer 50€ from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Atomicity requirement

– If the transaction fails after step 3 and before step 6, money will be "lost"
leading to an inconsistent database state

– The system should ensure that updates of a partially executed transaction
are not reflected in the database

• Durability requirement — once the user has been notified that the
transaction has completed (i.e., the transfer of the 50€ has taken place), the
updates to the database by the transaction must persist even if there are
software or hardware failures.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 4

Example of Fund Transfer (Cont.)

• Consistency requirement in above example:
– The sum of A and B is unchanged by the execution of the transaction

• In general, consistency requirements include
– Explicitly specified integrity constraints such as primary keys and foreign

keys

– Implicit integrity constraints

• e.g., sum of balances of all accounts, minus sum of loan amounts must
equal value of cash-in-hand

– A transaction must see a consistent database

– During transaction execution the database may be temporarily
inconsistent

– When the transaction completes successfully the database must be
consistent

• Erroneous transaction logic can lead to inconsistency

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 5

Example of Fund Transfer (Cont.)

• Isolation requirement — if between steps 3 and 6, another
transaction T2 is allowed to access the partially updated
database, it will see an inconsistent database (the sum A + B will
be less than it should be).

T1 T2
1. read(A)
2. A := A – 50
3. write(A)

read(A), read(B), print(A+B)
4. read(B)
5. B := B + 50
6. write(B)

• Isolation can be ensured trivially by running transactions serially
– i.e. one after the other

• However, executing multiple transactions concurrently has
significant benefits

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 6

ACID Properties

A transaction is a unit of program execution that accesses and possibly
updates various data items. To preserve the integrity of data the database
system must ensure:

• Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

• Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

• Isolation. Although multiple transactions may execute concurrently,
each transaction must be unaware of other concurrently executing
transactions. Intermediate transaction results must be hidden from
other concurrently executed transactions.

– That is, for every pair of transactions Ti and Tj, it appears to Ti that either Tj,
finished execution before Ti started, or Tj started execution after Ti finished.

• Durability. After a transaction completes successfully, the changes it
has made to the database persist, even if there are system failures.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 7

Transaction State

• Active – the initial state; the transaction stays in this state while it
is executing

• Partially committed – after the final statement has been
executed.

• Failed – after the discovery that normal execution can no longer
proceed.

• Aborted – after the transaction has been rolled back and the
database restored to its state prior to the start of the transaction.
Two options after it has been aborted:
– Restart the transaction

• Can be done only if no internal logical error

– Kill the transaction

• Committed – after successful completion.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 8

Transaction State (Cont.)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 9

Concurrent Executions

• Multiple transactions are allowed to run concurrently in the
system. Advantages are:
– Increased processor and disk utilization, leading to better transaction

throughput

• E.g., one transaction can be using the CPU while another is reading
from or writing to the disk

– Reduced average response time for transactions: short transactions need
not wait behind long ones.

• Concurrency control schemes – mechanisms to achieve isolation
– i.e. to control the interaction among the concurrent transactions in order

to prevent them from destroying the consistency of the database

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 10

Schedules

• Schedule – a sequences of instructions that specify the
chronological order in which instructions of concurrent
transactions are executed
– A schedule for a set of transactions must consist of all instructions of those

transactions

– Must preserve the order in which the instructions appear in each
individual transaction.

• A transaction that successfully completes its execution will have a
commit instruction as the last statement
– By default, a transaction is assumed to execute a commit instruction as its

last step

• A transaction that fails to successfully complete its execution will
have an abort instruction as the last statement

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 11

Schedule 1

• Let T1 transfer 50 € from A to B, and T2 transfer 10% of the
balance from A to B.

• A serial schedule in which T1 is followed by T2:

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 12

Schedule 2

• A serial schedule where T2 is followed by T1

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 13

Schedule 3

• Let T1 and T2 be the transactions defined previously. The following
schedule is not a serial schedule, but it is equivalent to Schedule 1

• In Schedules 1, 2 and 3, the sum A + B is preserved.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 14

Schedule 4

• The following concurrent schedule does not preserve the value of
A + B

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 15

Serializability

• Basic Assumption – Each transaction preserves database
consistency.

• Thus, serial execution of a set of transactions preserves database
consistency.

• A concurrent schedule is serializable if it is equivalent to a serial
schedule.

• We focus on a particular form of schedule equivalence called
conflict serializability

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 16

Conflicting Instructions

• There is a conflict between transactions Ti and Tj if and only if
there exists some item Q accessed by both transactions, and at
least one of them writes Q.

1. Ti : read(Q) Tj : read(Q) No conflict
2. Ti : read(Q) Tj : write(Q) Conflict
3. Ti : write(Q) Tj : read(Q) Conflict
4. Ti : write(Q) Tj : write(Q) Conflict

• Intuitively, a conflict between Ti and Tj forces a (logical) temporal
order between them.

• If the instructions of Ti and Tj are consecutive in a schedule and
they do not conflict, their results would remain the same even if
they had been interchanged in the schedule.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 17

Conflict Serializability

• If a schedule S can be transformed into a schedule S' by a series
of swaps of non-conflicting instructions, we say that S and S' are
conflict equivalent.

• We say that a schedule S is conflict serializable if it is conflict
equivalent to a serial schedule

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 18

Conflict Serializability (Cont.)

• Schedule 3 can be transformed into Schedule 6, a serial schedule
where T2 follows T1, by series of swaps of non-conflicting
instructions. Therefore, Schedule 3 is conflict serializable.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 19

Schedule 3 Schedule 6

Conflict Serializability (Cont.)

• Example of a schedule that is not conflict serializable:

– We are unable to swap instructions in the above schedule to obtain either
the serial schedule < T3 , T4 >, or the serial schedule < T4 , T3 >.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 20

Testing for Serializability

• Consider some schedule of a set of transactions T1, T2, ..., Tn

• Precedence graph — a direct graph where the vertices are the
transactions (names).

• We draw an arc from Ti to Tj if the two transactions conflict, and
Ti accessed the data item on which the conflict arose earlier.

• We may label the arc by the item that was accessed.

• Example of a precedence graph

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 21

Test for Conflict Serializability

• A schedule is conflict serializable if and
only if its precedence graph is acyclic.

• If precedence graph is acyclic, the
serializability order can be obtained by
a linear sorting of the graph.
– This is a linear order consistent with the

partial order of the graph.

– For example, a serializability order for
schedule (a) could be (b) or (c).

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 22

Test for Conflict Serializability: Examples

• The precedence graph for this schedule does not contain cycles
– It is conflict serializable

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 23

Test for Conflict Serializability: Examples

• The precedence graph for this schedule contains a cycle
– It is not conflict serializable

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 24

Simplified view of transactions

• We ignore operations other than read and write instructions

• We assume that transactions may perform arbitrary
computations on data in local buffers in between reads and
writes.

• Our simplified schedules consist of only read and write
instructions.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 25

Other Notions of Serializability

• The schedule below produces same outcome as the serial
schedule < T1 , T5 >, yet is not conflict serializable.

– Determining such equivalence requires analysis of operations other than
read and write.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 26

Recoverable Schedules

Need to address the effect of transaction failures on concurrently
running transactions.

• Recoverable schedule — if transaction Tj reads a data item
previously written by a transaction Ti , then the commit of Tj

must appear after the commit of Ti

• The following schedule is not recoverable:

– If T8 rolls back, T9 has read an inconsistent database state.

– Database must ensure that schedules are recoverable.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 27

Cascading Rollbacks

• Cascading rollback – a single transaction failure leads to a series
of transaction rollbacks. Consider the following schedule where
none of the transactions has yet committed (so the schedule is
recoverable):

– If T10 fails, T11 and T12 must also be rolled back.

– This can lead to the undoing of a significant amount of work.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 28

Cascadeless Schedules

• Cascadeless schedules — cascading rollbacks cannot occur.
– If transaction Tj reads a data item previously written by a transaction Ti ,

then the read of Tj must appear after the commit of Ti.

• Every cascadeless schedule is also recoverable
– Because if the read of Tj appears after the commit of Ti, then the commit

of Tj will also appear after the commit of Ti.

• It is desirable to restrict the schedules to those that are
cascadeless

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 29

Concurrency Control

• A database must provide a mechanism that will ensure that all
possible schedules are
– serializable, and

– recoverable, preferably cascadeless

• If only one transaction executes at a time, this generates serial
schedules, but provides a poor degree of concurrency
– Concurrency-control schemes allow concurrency while trying to comply

with the requirements above.

• Testing a schedule for serializability after it has been executed is
too late!

• Goal – develop concurrency control protocols that will assure
serializability.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 30

Concurrency Control vs. Serializability Tests

• Concurrency control protocols allow concurrent schedules, but
ensure that the schedules are serializable, recoverable, and
preferably cascadeless.

• Concurrency control protocols do not have access to the
precedence graph until the transactions are finished.
– Therefore, a protocol imposes a discipline that avoids non-serializable

schedules (more about this later).

• Different concurrency control protocols provide different
tradeoffs between the amount of concurrency they allow and the
amount of overhead that they incur.

• Tests for serializability help us understand why a concurrency
control protocol is correct.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 31

Weak Levels of Consistency

• Some applications are willing to live with weak levels of
consistency, allowing schedules that are not serializable
– e.g. a read-only transaction that wants to get an approximate total balance

of all accounts

– e.g. database statistics computed for query optimization can be
approximate

– such transactions need not be serializable with respect to other
transactions

• Tradeoff between accuracy and performance

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 32

Levels of Consistency in SQL

• Serializable — ensures serializable execution.

• Repeatable read — only committed records to be read.
– Repeated reads of same record must return same value.

– However, a transaction may not be serializable; it may find some records
inserted by a transaction but not find others.

• Read committed — only committed records can be read.
– Successive reads of a record may return different (committed) values.

• Read uncommitted — even uncommitted records may be read.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 33

Levels of Consistency in SQL (Cont.)

• Dirty reads: the transaction can see the changes being done by other running
transactions which have not commited yet.

• Non-repeatable read: the data in a record may appear to change due to other
transactions that have committed in the meantime.

• Phantom reads: the number of records in a table may appear to change due
to other transactions that have committed in the meantime.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 34

Isolation level
Dirty
reads

Non-repeatable
reads

Phantom
reads

Serializable no no no

Repeatable read no no yes

Read committed no yes yes

Read uncommitted yes yes yes

Levels of Consistency in SQL (Cont.)

• Lower degrees of consistency useful for gathering approximate
information about the database

• Some systems do not ensure serializable schedules by default
– Default isolation level is typically read committed or repeatable read

• Some systems have additional isolation levels
– Snapshot isolation (not part of the SQL standard)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 35

Transaction Definition in SQL

• In SQL, a transaction begins implicitly
– By default, each statement is a transaction that commits upon successful

execution.

– "Auto-commit" can be turned off, if desired.

• Explicit transactions start with begin transaction and end with
commit or rollback
– In most systems, the transaction is rolled back automatically upon error.

• The isolation level can be changed before the start of a new
transaction
– With the command set transaction isolation level ...

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 36

Implementation of Isolation Levels

• Locking
– Lock on entire database vs. lock on items

– How long to hold lock?

– Shared vs. exclusive locks

• Timestamps
– Transaction timestamp assigned e.g. when a transaction begins

– Data items store two timestamps

• Read timestamp

• Write timestamp

– Timestamps are used to detect out of order accesses

• Multiple versions of each data item
– Allow transactions to read from a "snapshot" of the database

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 37

Lock-Based Protocols

• A lock is a mechanism to control concurrent access to a data item

• Data items can be locked in two modes:

1. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

• Lock requests are made to concurrency-control manager.

Transaction can proceed only after request is granted.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 38

Lock-Based Protocols (Cont.)

• Lock-compatibility matrix

• A transaction may be granted a lock on an item if the requested
lock is compatible with locks already held on the item by other
transactions

• Any number of transactions can hold shared locks on an item,

• But if any transaction holds an exclusive on the item no other
transaction may hold any lock on the item.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 39

Lock-Based Protocols (Cont.)

• Example of a transaction performing locking:

T2: lock-S(A)

read(A)

unlock(A)

lock-S(B)

read(B)

unlock(B)

display(A+B)

• Locking as above is not sufficient to guarantee serializability

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 40

Schedule With Lock Grants

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 41

• This schedule is not
serializable

• A locking protocol is a set
of rules followed by all
transactions while
requesting and releasing
locks.

• Locking protocols enforce
serializability by restricting
the set of possible
schedules.

Schedule With Lock Grants (Cont.)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 42

• Grants will be omitted in the next slides
– Assume grant happens just before the next

instruction in the transaction

Deadlock

• Consider the partial schedule

• Neither T3 nor T4 can make progress
– executing lock-S(B) causes T4 to wait for T3 to release its lock on B, while

executing lock-X(A) causes T3 to wait for T4 to release its lock on A.

• Such a situation is called a deadlock.
– To break the deadlock, one of T3 or T4 must be rolled back and its locks

released.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 43

Deadlock (Cont.)

• The potential for deadlock exists in most locking protocols.

• Starvation is also possible if concurrency control manager is
badly designed. For example:
– A transaction may be waiting for an X-lock on an item, while a sequence of

other transactions request and are granted an S-lock on the same item.

– The same transaction is repeatedly rolled back due to deadlocks.

• Concurrency control manager can be designed to prevent
starvation.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 44

The Two-Phase Locking Protocol

• A protocol which ensures conflict-serializable schedules

• Phase 1: Growing Phase
– Transaction may obtain locks

– Transaction may not release locks

• Phase 2: Shrinking Phase
– Transaction may release locks

– Transaction may not obtain locks

• The protocol assures serializability

– It can be proved that the transactions can be serialized in the order of

their lock points (i.e. the point where a transaction acquired its final lock)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 45

Time

Lo
ck

s

The Two-Phase Locking Protocol (Cont.)

• Two-phase locking does not prevent deadlocks

• Extensions to basic two-phase locking needed to ensure

recoverability and avoid cascading rollbacks

– Strict two-phase locking: a transaction must hold all its exclusive locks till

it commits/aborts.

• Ensures recoverability and avoids cascading rollbacks

– Rigorous two-phase locking: a transaction must hold all locks till

commit/abort.

• Transactions can be serialized in the order in which they commit.

• Most databases implement rigorous two-phase locking but refer

to it simply as two-phase locking

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 46

Locking Protocols

• Given a locking protocol (such as two-phase locking)
– A schedule S is legal under a locking protocol if it can be generated by a

set of transactions that follow the protocol

– A protocol ensures serializability if all legal schedules under that protocol
are serializable

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 47

Lock Conversions

• Two-phase locking protocol with lock conversions:

– Growing Phase:
• can acquire a lock-S on item

• can acquire a lock-X on item

• can convert a lock-S to a lock-X (upgrade)

– Shrinking Phase:
• can release a lock-S

• can release a lock-X

• can convert a lock-X to a lock-S (downgrade)

• This protocol ensures serializability

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 48

Automatic Acquisition of Locks

• A transaction Ti issues the standard read/write instruction,

without explicit locking calls.

• The operation read(D) is processed as:

if Ti has a lock on D

then

read(D)
else begin

if needed, wait until no other transaction has a lock-X on D

grant Ti a lock-S on D

read(D)
end

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 49

Automatic Acquisition of Locks (Cont.)

• The operation write(D) is processed as:
if Ti has a lock-X on D

then
write(D)

else begin
if needed, wait until no other transaction has any lock on D
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

• All locks are released after commit or abort

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 50

Graph-Based Protocols

• Graph-based protocols are an alternative to two-phase locking

• Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of all
data items.

– If di→ dj then any transaction accessing both di and dj must access di

before accessing dj.

– Implies that the set D may now be viewed as a directed acyclic graph,
called a database graph.

• The tree-protocol is a simple kind of graph protocol.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 51

Tree Protocol

• Only exclusive locks are considered.

• The first lock may be on any data item.

• Subsequently, a data item can be locked only if its parent is
currently locked by the same transaction.

• Data items may be unlocked at any time.

• A data item that has been locked and unlocked cannot be
subsequently re-locked by the same transaction.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 52

Graph-Based Protocols (Cont.)

• The tree protocol ensures conflict serializability as well as
freedom from deadlock

• Unlocking may occur earlier in the tree-locking protocol than in
the two-phase locking protocol
– Shorter waiting times, and increase in concurrency

– Protocol is deadlock-free, no rollbacks are required

• Drawbacks
– Protocol does not guarantee recoverable or cascadeless schedules

• Need to introduce commit dependencies to ensure recoverability

– Transactions may have to lock data items that they do not access

• increased locking overhead, and additional waiting time

• potential decrease in concurrency

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 53

Deadlock Handling

• A deadlock occurs if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 54

Deadlock Handling (Cont.)

• Deadlock prevention protocols ensure that the system does not
enter into a deadlock state. Some prevention strategies:
– Require that each transaction locks all its data items before it begins

execution (pre-declaration).

– Impose partial ordering of all data items and require that a transaction can
lock data items only in the order specified by the partial order (graph-
based protocol).

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 55

More Deadlock Prevention Strategies

• Wait-die scheme
– Older transaction may wait for younger one to release data item.

– Younger transactions never wait for older ones; they are rolled back
instead.

– A transaction may die several times before acquiring a lock

• Wound-wait scheme
– Older transaction wounds (forces rollback) of younger transaction instead

of waiting for it.

– Younger transactions may wait for older ones.

– Fewer rollbacks than wait-die scheme.

• In both schemes, a rolled back transactions is restarted with its
original timestamp.
– Ensures that older transactions have precedence over newer ones, and

starvation is thus avoided.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 56

Deadlock prevention (Cont.)

• Timeout-based schemes:
– A transaction waits for a lock only for a specified amount of time. After

that, the wait times out and the transaction is rolled back.

– Ensures that deadlocks get resolved by timeout if they occur

– Simple to implement

– But may roll back transaction unnecessarily in absence of deadlock

• Difficult to determine good value of the timeout interval.

– Starvation is also possible

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 57

Deadlock Detection

• Wait-for graph
– Vertices: transactions

– Edge from Ti→Tj. : if Ti is waiting for a lock held in conflicting mode by Tj

• The system is in a deadlock state if and only if the wait-for graph
has a cycle.

• Invoke a deadlock-detection algorithm periodically to look for
cycles.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 58

Wait-for graph without a cycle Wait-for graph with a cycle

Deadlock Recovery

• When deadlock is detected:
– Some transaction will have to rolled back (made a victim) to break

deadlock cycle.

• Select that transaction as victim that will incur minimum cost

– Rollback – determine how far to roll back transaction

• Total rollback: Abort the transaction and then restart it.

• Partial rollback: Roll back victim transaction only as far as necessary to
release locks that another transaction in cycle is waiting for

• Starvation can happen
– One solution: oldest transaction in the deadlock set is never chosen as

victim

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 59

Multiple Granularity

• Allow data items to be of various sizes and define a hierarchy of
data granularities, where the small granularities are nested
within larger ones

• The hierarchy can be represented graphically as a tree (but don't
confuse with tree-protocol)

• Granularity of locking (level in tree where locking is done):
– Fine granularity (lower in tree): high concurrency, high locking overhead

– Coarse granularity (higher in tree): low locking overhead, low concurrency

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 60

Example of Granularity Hierarchy

• The levels, starting from the coarsest (top) level can be
– database, area, file, record (as in the book)

– database, table, page, row (as in SQL Server)

– etc.

• When a transaction locks a node in S or X mode, it implicitly locks
all descendants in the same mode (S or X).

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 61

Intention Lock Modes

• In addition to S and X lock modes, there are three additional lock
modes with multiple granularity:
– intention-shared (IS): indicates there are shared locks at lower levels of

the tree

– intention-exclusive (IX): indicates there are exclusive or shared locks at
lowers level of the tree

– shared and intention-exclusive (SIX): a shared lock, with the possibility of
having exclusive or shared locks at lower levels of the tree.

• With intention locks, a transaction does not need to search the
entire tree to determine whether it can lock a node.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 62

Multiple Granularity Locking Scheme

• A transaction can lock nodes according to the following rules:
– The root of the tree is locked first in some mode (IS, IX, S, SIX, X).

– If a node is locked in IS mode, its descendants can be locked in IS or S
mode.

– If a node is locked in IX mode, its descendants can be locked in any mode.

– If a node is locked in S mode, its descendants are implicitly locked in S
mode.

– If a node is locked in SIX mode, its descendants are implicitly locked in S
mode, but can also be locked IX, SIX, or X mode.

– If a node is locked in X mode, its descendants are implicitly locked in X
mode.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 63

Multiple Granularity Locking Scheme (Cont.)

• In other words:
– Before requesting an IS or S lock on a node, all ancestor nodes must be

locked in IS or IX mode.

– Before requesting an IX, SIX or X lock on a node, all ancestor nodes must
be locked in IX or SIX mode.

• Leaf nodes are always locked in S or X mode
– There are no intention locks on leaves since they have no descendants.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 64

Multiple Granularity Locking Scheme (Cont.)

• Locks are acquired
– in root-to-leaf order

• Locks are released
– during the transaction, in leaf-to-root order

– at the end of the transaction, in any order

• Re-acquiring locks after they have been released is not allowed.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 65

Compatibility Matrix with Intention Lock Modes

• The procedure is the same for all concurrent transactions
– Locks will be granted according to the following compatibility matrix

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 66

Multiple Granularity Locking Scheme: Example

• T1: read(ra2
)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 67

IS

IS

IS

S

Multiple Granularity Locking Scheme: Example

• T2: write(ra9
)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 68

IX

IX

IX

X

Multiple Granularity Locking Scheme: Example

• T3: read(Fa)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 69

IS

IS

S

S S S

Multiple Granularity Locking Scheme: Example

• T4: read(DB)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 70

S

S

S

S S S

S

S S S S

S

S

Multiple Granularity Locking Scheme: Example

• These are compatible:
– T1: read(ra2

)

– T3: read(Fa)

– T4: read(DB)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 71

IS

IS

IS

S

IS

IS

S

S S S

S

S

S

S S S

S

S S S S

S

S

Multiple Granularity Locking Scheme: Example

• These are compatible:
– T1: read(ra2

)

– T2: write(ra9
)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 72

IS

IS

IS

S

IX

IX

IX

X

Multiple Granularity Locking Scheme: Example

• These are not compatible:
– T2: write(ra9

)

– T3: read(Fa)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 73

IX

IX

IX

X

IS

IS

S

S S S

Multiple Granularity Locking Scheme: Example

• These are not compatible:
– T2: write(ra9

)

– T4: read(DB)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 74

IX

IX

IX

X

S

S

S

S S S

S

S S S S

S

S

Timestamp-Based Protocols

• Each transaction Ti is issued a timestamp TS(Ti) when it enters the

system.

– Each transaction has a unique timestamp

– Newer transactions have timestamps greater than earlier ones

– Timestamp can be based on wall-clock time or logical counter

• Timestamp-based protocols manage concurrent execution such

that timestamp order = serializability order

• Several protocols based on timestamps

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 75

Timestamp-Ordering Protocol

The timestamp ordering (TSO) protocol

• Maintains for each data Q two timestamp values:

– W-timestamp(Q) is the largest timestamp of any transaction that executed

write(Q) successfully.

– R-timestamp(Q) is the largest timestamp of any transaction that executed

read(Q) successfully.

• Imposes rules on read and write operations to ensure that
– Any conflicting operations are executed in timestamp order

– Out of order operations cause transaction rollback

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 76

Timestamp-Ordering Protocol (Cont.)

• Suppose a transaction Ti issues a read(Q)

1. If W-timestamp(Q) > TS(Ti), then Ti needs to read a value of Q that
was already overwritten.

• Hence, the read operation is rejected, and Ti is rolled back.

2. If W-timestamp(Q) ≤ TS(Ti), then the read operation is executed, and
R-timestamp(Q) is set to

max(R-timestamp(Q), TS(Ti)).

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 77

Timestamp-Ordering Protocol (Cont.)

• Suppose that transaction Ti issues write(Q).

1. If R-timestamp(Q) > TS(Ti), then the value of Q that Ti is producing is
being written too late, it should have been written earlier.

• Hence, the write operation is rejected, and Ti is rolled back.

2. If W-timestamp(Q) > TS(Ti), then Ti is attempting to write an obsolete
value of Q; a newer transaction has written a more recent value.

• Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q) is
set to TS(Ti).

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 78

Example of Schedule Under TSO

• This schedule is valid under TSO
– Assume that initially:

• R-timestamp(A) = W-timestamp(A) = 0

• R-timestamp(B) = W-timestamp(B) = 0

– Assume TS(T25) = 25 and TS(T26) = 26

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 79

Example of Schedule Under TSO (Cont.)

• This schedule is not valid under TSO
– Assume that initially:

• R-timestamp(Q) = W-timestamp(Q) = 0

– Assume TS(T27) = 27 and TS(T28) = 28

– T27 is attempting to write an obsolete value, and is therefore rolled back.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 80

Thomas' Write Rule

• Modified version of the timestamp-ordering protocol in which
obsolete write operations may be ignored under certain
circumstances.

– When Ti attempts to write data item Q, if W-timestamp(Q) > TS(Ti), then Ti

is attempting to write an obsolete value of Q.

– Rather than rolling back Ti as the timestamp ordering protocol would have

done, this write operation can be ignored.

• Otherwise this protocol is the same as the timestamp ordering
protocol.

• Thomas' Write Rule allows greater potential concurrency.

– Allows some schedules that are not conflict-serializable.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 81

Another Example Under TSO

• A partial schedule for several data items for transactions with timestamps 1, 2,
3, 4, 5, with all R-timestamp = W-timestamp = 0 initially

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 82

Correctness of Timestamp-Ordering Protocol

• The timestamp-ordering protocol guarantees serializability since
all the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph.

• Timestamp protocol prevents deadlock since no transaction ever
waits.

• But the schedule may not be cascade-free, and may not even be
recoverable.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 83

Recoverability and Cascade Freedom

• Solution 1:
– A transaction is structured such that its writes are all performed at the end

of its processing

– All writes of a transaction form an atomic action; no transaction may
execute while a transaction is being written

– A transaction that aborts is restarted with a new timestamp

• Solution 2:
– Limited form of locking: wait for data to be committed before reading it

• Solution 3:
– Use commit dependencies to ensure recoverability

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 84

Multiversion Schemes

• Multiversion schemes keep old versions of data item to increase
concurrency. Several variants:
– Multiversion Timestamp Ordering

– Snapshot isolation

• Key ideas:
– Each successful write results in the creation of a new version of the data

item written.

– Use timestamps to label versions.

– When a read(Q) operation is issued, select an appropriate version of Q
based on the timestamp of the transaction issuing the read request, and
return the value of the selected version.

• Read requests never have to wait as an appropriate version is
returned immediately.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 85

Multiversion Timestamp Ordering

• Each data item Q has a sequence of versions <Q1, Q2,...., Qm>.

• Each version Qk has its own timestamps:
▪ W-timestamp(Qk) – timestamp of the transaction that created (wrote)

version Qk

▪ R-timestamp(Qk) – largest timestamp of a transaction that successfully
read version Qk

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 86

Multiversion Timestamp Ordering (Cont.)

• Suppose that transaction Ti issues a read(Q) or write(Q)
operation. Let Qk denote the version with the largest W-
timestamp ≤ TS(Ti).
1. If transaction Ti issues a read(Q), then

• the value returned is version Qk

• If R-timestamp(Qk) < TS(Ti), set R-timestamp(Qk) = TS(Ti)

2. If transaction Ti issues a write(Q)

1. if R-timestamp(Qk) > TS(Ti), then transaction Ti is rolled back.

2. if W-timestamp(Qk) = TS(Ti), then version Qk is overwritten.

3. Otherwise, a new version Qi of Q is created, with W-timestamp(Qi) =
R-timestamp(Qi) = TS(Ti)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 87

Multiversion Timestamp Ordering (Cont.)

• Observations
– Read requests never fail and never wait.

– A write by Ti is rejected if some newer transaction Tj that should read Ti's
version, has read a version created by a transaction older than Ti.

• Protocol guarantees serializability
– but does not ensure recoverability or cascadelessness

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 88

Snapshot Isolation

• Widely used in practice (incl. Oracle, PostgreSQL, SQL Server, etc.)

• Each transaction is given its own snapshot of the database
– Snapshot contains only committed values by previous transactions

– Reads and writes are performed on the snapshot

– Complete isolation between snapshots/transactions (before commit)

• Transactions that update the database have potential conflicts
– Updates are kept in the snapshot until the transaction commits

– Updates must be validated before the transaction is allowed to commit

– If allowed to commit, updates in the snapshot are written to database

– If not allowed to commit, transaction is rolled back

• Read requests never wait
– Read from private snapshot

• Read-only transactions never fail
– No updates, allowed to commit

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 89

Snapshot Isolation: Example

• A transaction Ti executing with
snapshot isolation
– Takes snapshot of committed data

at start

– Always reads/modifies data in its
own snapshot

– Updates of concurrent transactions
are not visible to Ti

– Writes of Ti complete when it
commits

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 90

T1 T2 T3

write(Y) : 1

commit

start

read(X) : 0

read(Y) : 1

write(X) : 2

write(Z) : 3

commit

read(Z) : 0

read(Y) : 1

write(X) : 4

commit-req

rollback

Multiversioning in Snapshot Isolation

• In snapshot isolation, transactions are given two timestamps:
– StartTS(Ti) is the time at which Ti started

– CommitTS(Ti) is the time at which Ti requested commit

• Data items have versions, each with a single timestamp:
– W-timestamp(Qk) which is equal to CommitTS(Ti) of the transaction Ti that

created version Qk

• When a transaction Tj reads a data item Q
– It reads the latest version Qk such that W-timestamp(Qk) ≤ StartTS(Tj)

– It does not see any updates of transactions committed after StartTS(Tj)

– Tj sees a snapshot of the database at the time when it started

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 91

Validation Steps in Snapshot Isolation

• Transactions Ti and Tj are said to be concurrent if either:
– StartTS(Ti) ≤ StartTS(Tj) ≤ CommitTS(Ti) or

– StartTS(Tj) ≤ StartTS(Ti) ≤ CommitTS(Tj)

• When two concurrent transactions update the same data item
– The two transactions operate in isolation in their own private snapshot

– Neither transaction sees the update made by the other

– If both transactions are allowed to commit and write to the database

• one update will be overwritten by the other: lost update

• Two approaches to prevent lost updates:
– First committer wins

– First updater wins

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 92

Validation Steps in Snapshot Isolation (Cont.)

• First committer wins
– Ti requests commit and is assigned CommitTS(Ti)

– Suppose Ti has updated a single data item Q

– If there is a version Qk with StartTS(Ti) < W-timestamp(Qk) < CommitTS(Ti)

• A concurrent transaction has already written Q

• Ti is not allowed commit, and must be rolled back

– If no such version Qk exists

• Ti is allowed to commit, and its update is written to the database

– Can be generalized to multiple data items (check all of them)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 93

Validation Steps in Snapshot Isolation (Cont.)

• First updater wins
– When Ti attempts to update data item Q, it requests a write lock on Q

– If the lock is acquired:

• If Q has been updated by a concurrent transaction, Ti is rolled back

• Otherwise, Ti may proceed, while keeping the write lock on Q

– If the lock is being held by a concurrent transaction Tj

• Ti waits until Tj commits or aborts

• If Tj aborts, Ti acquires the lock, and do the same as before

• If Tj commits, Ti must be rolled back

– The write lock on Q is released when Ti commits or aborts

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 94

Serializability in Snapshot Isolation

• Snapshot isolation does not ensure serializability
– Ti reads A and B, updates A based on B

– Tj reads A and B, updates B based on A

– Updates are on different objects; both are allowed to commit

• but the result is not equivalent to a serial schedule

– Schedule is not conflict-serializable

• Precedence graph has a cycle

– This anomaly is called a write skew

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 95

Serializable Snapshot Isolation

• Snapshot isolation tracks write-write conflicts, but does not track
read-write conflicts
– For example, when Ti writes data item Q, and Tj reads an earlier version of

Q, but Tj should be serialized after Ti

• Serializable snapshot isolation (SSI) is an extension of snapshot
isolation that ensures serializability
– Tracks both write-write and read-write conflicts

– In theory, a transaction should be rolled back when a cycle is found

– In practice, a transaction is rolled back when it has both an incoming read-
write conflict and an outgoing read-write conflict

• may result in some unnecessary rollbacks, but it's simpler to check

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 96

	Slide 1: Data Administration in Information Systems
	Slide 2: Query optimization
	Slide 3: Transaction Concept
	Slide 4: Example of Fund Transfer
	Slide 5: Example of Fund Transfer (Cont.)
	Slide 6: Example of Fund Transfer (Cont.)
	Slide 7: ACID Properties
	Slide 8: Transaction State
	Slide 9: Transaction State (Cont.)
	Slide 10: Concurrent Executions
	Slide 11: Schedules
	Slide 12: Schedule 1
	Slide 13: Schedule 2
	Slide 14: Schedule 3
	Slide 15: Schedule 4
	Slide 16: Serializability
	Slide 17: Conflicting Instructions
	Slide 18: Conflict Serializability
	Slide 19: Conflict Serializability (Cont.)
	Slide 20: Conflict Serializability (Cont.)
	Slide 21: Testing for Serializability
	Slide 22: Test for Conflict Serializability
	Slide 23: Test for Conflict Serializability: Examples
	Slide 24: Test for Conflict Serializability: Examples
	Slide 25: Simplified view of transactions
	Slide 26: Other Notions of Serializability
	Slide 27: Recoverable Schedules
	Slide 28: Cascading Rollbacks
	Slide 29: Cascadeless Schedules
	Slide 30: Concurrency Control
	Slide 31: Concurrency Control vs. Serializability Tests
	Slide 32: Weak Levels of Consistency
	Slide 33: Levels of Consistency in SQL
	Slide 34: Levels of Consistency in SQL (Cont.)
	Slide 35: Levels of Consistency in SQL (Cont.)
	Slide 36: Transaction Definition in SQL
	Slide 37: Implementation of Isolation Levels
	Slide 38: Lock-Based Protocols
	Slide 39: Lock-Based Protocols (Cont.)
	Slide 40: Lock-Based Protocols (Cont.)
	Slide 41: Schedule With Lock Grants
	Slide 42: Schedule With Lock Grants (Cont.)
	Slide 43: Deadlock
	Slide 44: Deadlock (Cont.)
	Slide 45: The Two-Phase Locking Protocol
	Slide 46: The Two-Phase Locking Protocol (Cont.)
	Slide 47: Locking Protocols
	Slide 48: Lock Conversions
	Slide 49: Automatic Acquisition of Locks
	Slide 50: Automatic Acquisition of Locks (Cont.)
	Slide 51: Graph-Based Protocols
	Slide 52: Tree Protocol
	Slide 53: Graph-Based Protocols (Cont.)
	Slide 54: Deadlock Handling
	Slide 55: Deadlock Handling (Cont.)
	Slide 56: More Deadlock Prevention Strategies
	Slide 57: Deadlock prevention (Cont.)
	Slide 58: Deadlock Detection
	Slide 59: Deadlock Recovery
	Slide 60: Multiple Granularity
	Slide 61: Example of Granularity Hierarchy
	Slide 62: Intention Lock Modes
	Slide 63: Multiple Granularity Locking Scheme
	Slide 64: Multiple Granularity Locking Scheme (Cont.)
	Slide 65: Multiple Granularity Locking Scheme (Cont.)
	Slide 66: Compatibility Matrix with Intention Lock Modes
	Slide 67: Multiple Granularity Locking Scheme: Example
	Slide 68: Multiple Granularity Locking Scheme: Example
	Slide 69: Multiple Granularity Locking Scheme: Example
	Slide 70: Multiple Granularity Locking Scheme: Example
	Slide 71: Multiple Granularity Locking Scheme: Example
	Slide 72: Multiple Granularity Locking Scheme: Example
	Slide 73: Multiple Granularity Locking Scheme: Example
	Slide 74: Multiple Granularity Locking Scheme: Example
	Slide 75: Timestamp-Based Protocols
	Slide 76: Timestamp-Ordering Protocol
	Slide 77: Timestamp-Ordering Protocol (Cont.)
	Slide 78: Timestamp-Ordering Protocol (Cont.)
	Slide 79: Example of Schedule Under TSO
	Slide 80: Example of Schedule Under TSO (Cont.)
	Slide 81: Thomas' Write Rule
	Slide 82: Another Example Under TSO
	Slide 83: Correctness of Timestamp-Ordering Protocol
	Slide 84: Recoverability and Cascade Freedom
	Slide 85: Multiversion Schemes
	Slide 86: Multiversion Timestamp Ordering
	Slide 87: Multiversion Timestamp Ordering (Cont.)
	Slide 88: Multiversion Timestamp Ordering (Cont.)
	Slide 89: Snapshot Isolation
	Slide 90: Snapshot Isolation: Example
	Slide 91: Multiversioning in Snapshot Isolation
	Slide 92: Validation Steps in Snapshot Isolation
	Slide 93: Validation Steps in Snapshot Isolation (Cont.)
	Slide 94: Validation Steps in Snapshot Isolation (Cont.)
	Slide 95: Serializability in Snapshot Isolation
	Slide 96: Serializable Snapshot Isolation

