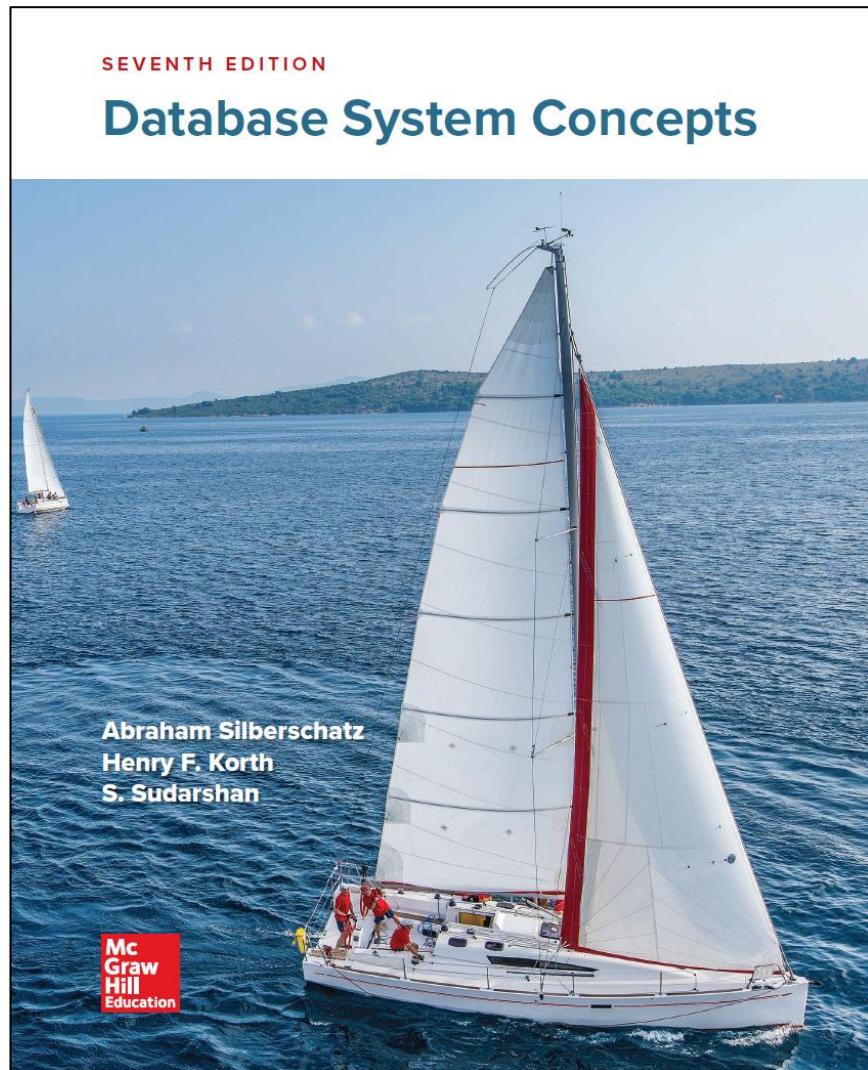


Data Administration in Information Systems

Query optimization

Query optimization



Contents xi

Chapter 16 Query Optimization

- | | | | |
|--|-----|--|-----|
| 16.1 Overview | 743 | 16.5 Materialized Views | 778 |
| 16.2 Transformation of Relational Expressions | 747 | 16.6 Advanced Topics in Query Optimization | 783 |
| 16.3 Estimating Statistics of Expression Results | 757 | 16.7 Summary | 787 |
| 16.4 Choice of Evaluation Plans | 766 | Exercises | 789 |
| | | Further Reading | 794 |

PART SEVEN ■ TRANSACTION MANAGEMENT

Chapter 17 Transactions

- | | | | |
|---|-----|---|-----|
| 17.1 Transaction Concept | 799 | 17.8 Transaction Isolation Levels | 821 |
| 17.2 A Simple Transaction Model | 801 | 17.9 Implementation of Isolation Levels | 823 |
| 17.3 Storage Structure | 804 | 17.10 Transactions as SQL Statements | 826 |
| 17.4 Transaction Atomicity and Durability | 805 | 17.11 Summary | 828 |
| 17.5 Transaction Isolation | 807 | Exercises | 831 |
| 17.6 Serializability | 812 | Further Reading | 834 |
| 17.7 Transaction Isolation and Atomicity | 819 | | |

Chapter 18 Concurrency Control

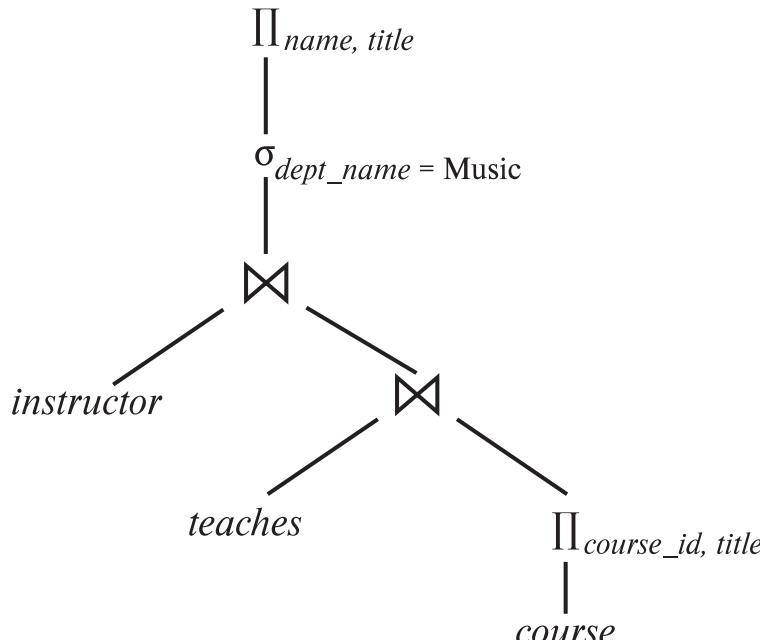
- | | | | |
|--|-----|--|-----|
| 18.1 Lock-Based Protocols | 835 | 18.8 Snapshot Isolation | 872 |
| 18.2 Deadlock Handling | 849 | 18.9 Weak Levels of Consistency in Practice | 880 |
| 18.3 Multiple Granularity | 853 | 18.10 Advanced Topics in Concurrency Control | 883 |
| 18.4 Insert Operations, Delete Operations, and Predicate Reads | 857 | 18.11 Summary | 894 |
| 18.5 Timestamp-Based Protocols | 861 | Exercises | 899 |
| 18.6 Validation-Based Protocols | 866 | Further Reading | 904 |
| 18.7 Multiversion Schemes | 869 | | |

Chapter 19 Recovery System

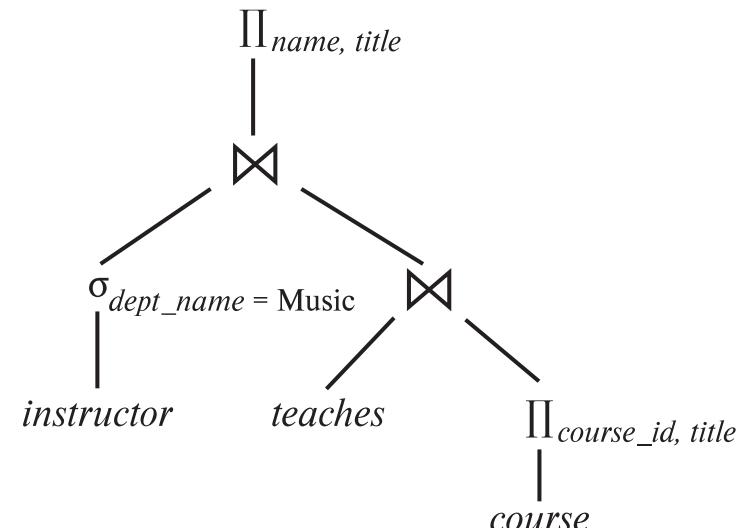
- | | | | |
|--|-----|---|-----|
| 19.1 Failure Classification | 907 | 19.8 Early Lock Release and Logical Undo Operations | 935 |
| 19.2 Storage | 908 | 19.9 ARIES | 941 |
| 19.3 Recovery and Atomicity | 912 | 19.10 Recovery in Main-Memory Databases | 947 |
| 19.4 Recovery Algorithm | 922 | 19.11 Summary | 948 |
| 19.5 Buffer Management | 926 | Exercises | 952 |
| 19.6 Failure with Loss of Non-Volatile Storage | 930 | Further Reading | 956 |
| 19.7 High Availability Using Remote Backup Systems | 931 | | |

Introduction

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation



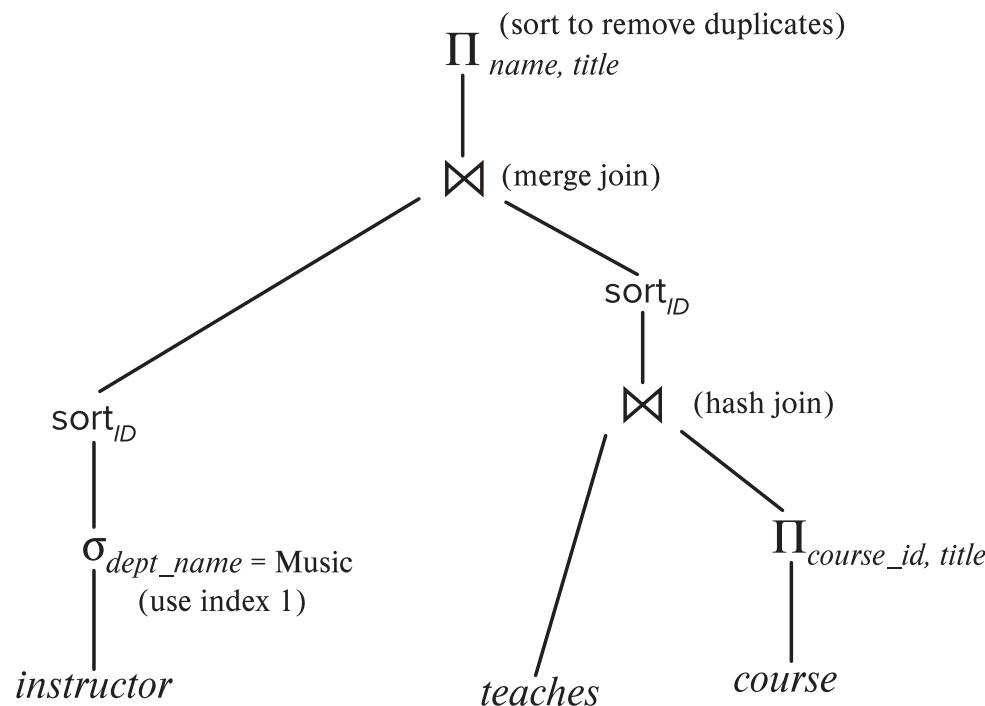
(a) Initial expression tree



(b) Transformed expression tree

Introduction (Cont.)

- An **evaluation plan** defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.



- Find out how to view query execution plans on your database system

Introduction (Cont.)

- Cost difference between evaluation plans for a query can be enormous
 - e.g., seconds vs. days in some cases
- Steps in **cost-based query optimization**
 1. Generate logically equivalent expressions using **equivalence rules**
 2. Annotate resultant expressions to get alternative query plans
 3. Choose the cheapest plan based on **estimated cost**
- Estimation of plan cost based on:
 - Statistical information about relations. Examples:
 - number of tuples, number of distinct values for an attribute
 - Statistics estimation for intermediate results
 - to compute cost of complex expressions
 - Cost formulae for algorithms, computed using statistics

Transformation of Relational Expressions

- Two relational algebra expressions are said to be **equivalent** if the two expressions generate the same set of tuples on every database instance
 - Note: order of tuples is irrelevant
- In SQL, inputs and outputs are multisets of tuples
 - Two expressions in the multiset version of the relational algebra are said to be equivalent if the two expressions generate the same multiset of tuples on every database instance.
- An **equivalence rule** says that expressions of two forms are equivalent
 - Can replace expression of first form by second, or vice versa

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$\sigma_{\theta_1 \wedge \theta_2}(E) \equiv \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

2. Selection operations are commutative.

$$\sigma_{\theta_1}(\sigma_{\theta_2}(E)) \equiv \sigma_{\theta_2}(\sigma_{\theta_1}(E))$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted.

$$\Pi_{L_1}(\Pi_{L_2}(\dots(\Pi_{L_n}(E))\dots)) \equiv \Pi_{L_1}(E)$$

where $L_1 \subseteq L_2 \dots \subseteq L_n$

4. Selections can be combined with Cartesian products and theta joins.

- $\sigma_{\theta}(E_1 \times E_2) \equiv E_1 \bowtie_{\theta} E_2$

- $\sigma_{\theta_1}(E_1 \bowtie_{\theta_2} E_2) \equiv E_1 \bowtie_{\theta_1 \wedge \theta_2} E_2$

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

$$E_1 \bowtie E_2 \equiv E_2 \bowtie E_1$$

6. (a) Natural join operations are associative:

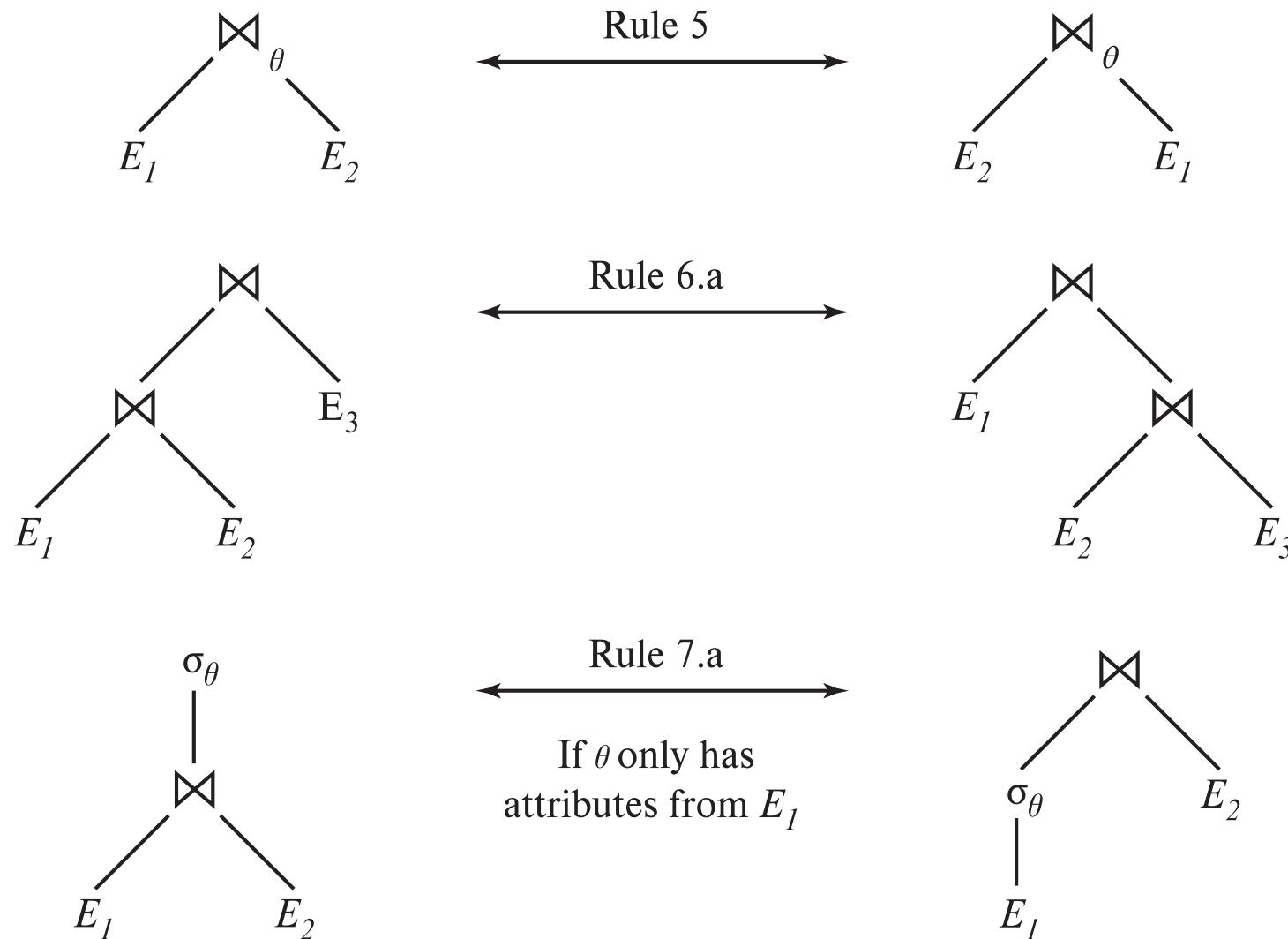
$$(E_1 \bowtie E_2) \bowtie E_3 \equiv E_1 \bowtie (E_2 \bowtie E_3)$$

(b) Theta joins are associative in the following manner:

$$(E_1 \bowtie_{\theta_{12}} E_2) \bowtie_{\theta_{13} \wedge \theta_{23}} E_3 \equiv E_1 \bowtie_{\theta_{12} \wedge \theta_{13}} (E_2 \bowtie_{\theta_{23}} E_3)$$

where θ_{ij} involves attributes from E_i and E_j only.

Pictorial Depiction of Equivalence Rules



Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under the following two conditions:
- When all the attributes in θ_1 involve only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta_1}(E_1 \bowtie_{\theta} E_2) \equiv (\sigma_{\theta_1}(E_1)) \bowtie_{\theta} E_2$$

- When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2 .

$$\sigma_{\theta_1 \wedge \theta_2}(E_1 \bowtie_{\theta} E_2) \equiv (\sigma_{\theta_1}(E_1)) \bowtie_{\theta} (\sigma_{\theta_2}(E_2))$$

Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation as follows:

(a) if θ involves only attributes from $L_1 \cup L_2$:

$$\prod_{L_1 \cup L_2}(E_1 \bowtie_{\theta} E_2) \equiv \prod_{L_1}(E_1) \bowtie_{\theta} \prod_{L_2}(E_2)$$

(b) In general, consider a join $E_1 \bowtie_{\theta} E_2$

- Let L_1 and L_2 be sets of attributes from E_1 and E_2 , respectively
- Let L_{1*} be attributes of E_1 that are in join condition θ , but are not in $L_1 \cup L_2$
- Let L_{2*} be attributes of E_2 that are in join condition θ , but are not in $L_1 \cup L_2$

$$\prod_{L_1 \cup L_2}(E_1 \bowtie_{\theta} E_2) \equiv \prod_{L_1 \cup L_2}(\prod_{L_1 \cup L_{1*}}(E_1) \bowtie_{\theta} \prod_{L_2 \cup L_{2*}}(E_2))$$

Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative

$$E_1 \cup E_2 \equiv E_2 \cup E_1$$

$$E_1 \cap E_2 \equiv E_2 \cap E_1$$

(but set difference is not commutative)

10. Set union and intersection are associative.

$$(E_1 \cup E_2) \cup E_3 \equiv E_1 \cup (E_2 \cup E_3)$$

$$(E_1 \cap E_2) \cap E_3 \equiv E_1 \cap (E_2 \cap E_3)$$

11. The selection operation distributes over \cup , \cap and $-$.

a. $\sigma_{\theta}(E_1 \cup E_2) \equiv \sigma_{\theta}(E_1) \cup \sigma_{\theta}(E_2)$

b. $\sigma_{\theta}(E_1 \cap E_2) \equiv \sigma_{\theta}(E_1) \cap \sigma_{\theta}(E_2) \equiv \sigma_{\theta}(E_1 \cap E_2)$

c. $\sigma_{\theta}(E_1 - E_2) \equiv \sigma_{\theta}(E_1) - \sigma_{\theta}(E_2) \equiv \sigma_{\theta}(E_1) - E_2$

12. The projection operation distributes over union

$$\Pi_L(E_1 \cup E_2) \equiv (\Pi_L(E_1)) \cup (\Pi_L(E_2))$$

Transformation Example: Pushing Selections

- Query: Find the names of all instructors in the *Music* department, along with the titles of the courses that they teach

$$\Pi_{name, title} (\sigma_{dept_name = 'Music'} (instructor \bowtie (teaches \bowtie \Pi_{course_id, title} (course))))$$

- Transformation using rule 7a.

$$\Pi_{name, title} ((\sigma_{dept_name = 'Music'} (instructor)) \bowtie (teaches \bowtie \Pi_{course_id, title} (course)))$$

- Performing the selection as early as possible reduces the size of the relation to be joined.

Example with Multiple Transformations

- Query: Find the names of all instructors in the Music department who have taught a course in 2017, along with the titles of the courses that they taught

$$\Pi_{name, title}(\sigma_{dept_name = 'Music' \wedge year = 2017} (instructor \bowtie (teaches \bowtie \Pi_{course_id, title} (course))))$$

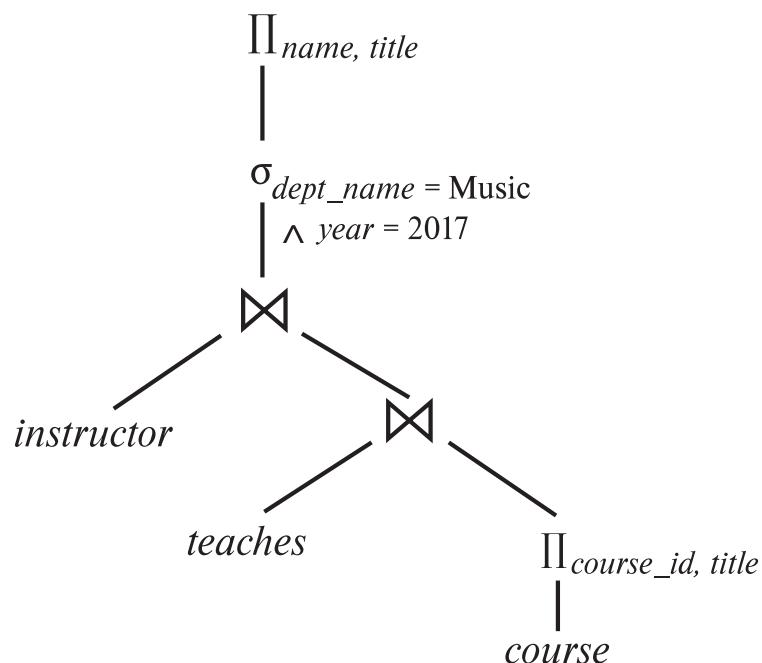
- Transformation using join associatively (Rule 6a):

$$\Pi_{name, title}(\sigma_{dept_name = 'Music' \wedge year = 2017} ((instructor \bowtie teaches) \bowtie \Pi_{course_id, title} (course)))$$

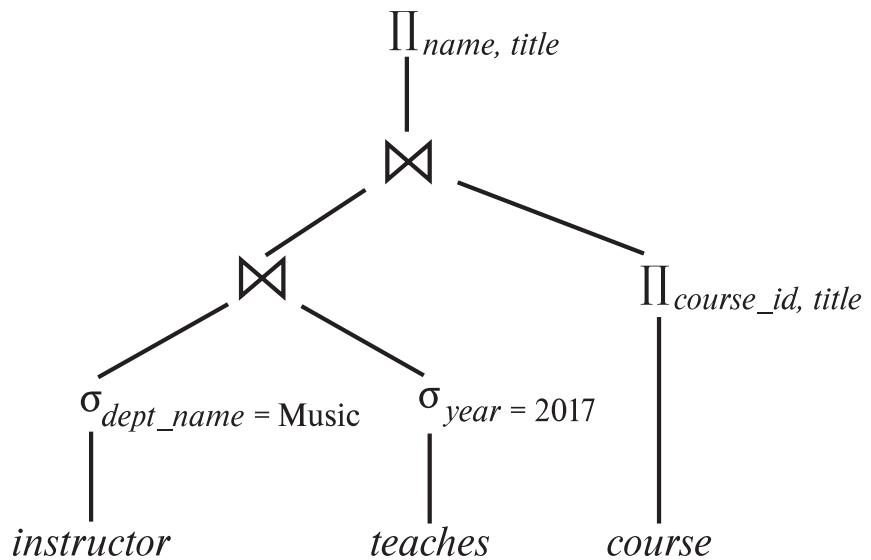
- Now apply the "perform selections early" rule, resulting in the subexpression

$$\sigma_{dept_name = 'Music'} (instructor) \bowtie \sigma_{year = 2017} (teaches)$$

Multiple Transformations (Cont.)



(a) Initial expression tree



(b) Tree after multiple transformations

Transformation Example: Pushing Projections

- Consider: $\Pi_{name, title}(\sigma_{dept_name = 'Music'} (instructor) \bowtie teaches \bowtie \Pi_{course_id, title} (course))$
- When we compute
 $\sigma_{dept_name = 'Music'} (instructor) \bowtie teaches$
- Push projections using equivalence rules 8a and 8b; eliminate unneeded attributes from intermediate results to get:
 $\Pi_{name, title}(\Pi_{name, course_id} (\sigma_{dept_name = 'Music'} (instructor) \bowtie teaches) \bowtie \Pi_{course_id, title} (course))$
- Performing the projection as early as possible reduces the size of the relation to be joined.

Join Ordering Example

- For all relations r_1, r_2 , and r_3 ,

$$(r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)$$

(Join Associativity) \bowtie

- If $r_2 \bowtie r_3$ is quite large and $r_1 \bowtie r_2$ is small, we choose

$$(r_1 \bowtie r_2) \bowtie r_3$$

so that we compute and store a smaller temporary relation.

Join Ordering Example (Cont.)

- Consider the expression

$$\Pi_{name, title} (\sigma_{dept_name = 'Music'} (instructor) \bowtie teaches \\ \bowtie \Pi_{course_id, title} (course))$$

- Could compute $(teaches \bowtie \Pi_{course_id, title} (course))$ first, and join result with

$$\sigma_{dept_name = 'Music'} (instructor)$$

but the result of the first join is likely to be a large relation.

- Only a small fraction of instructors are likely to be from the *Music* department

- it is better to compute

$$\sigma_{dept_name = 'Music'} (instructor) \bowtie teaches$$

first.

Enumeration of Equivalent Expressions

- Query optimizers use equivalence rules to **systematically** generate expressions equivalent to the given expression
- Could generate all equivalent expressions as follows:
 - Repeat
 - apply all applicable equivalence rules on every subexpression of every equivalent expression found so far
 - add newly generated expressions to the set of equivalent expressions
 - Until no new equivalent expressions are generated above
- The above approach is very expensive in space and time
 - It is not necessary to generate every possible expression
 - Take cost estimates into account; avoid examining many expressions

Cost Estimation

- Cost of different operations described in previous lecture
 - Need statistics of input relations
 - e.g., number of tuples, sizes of tuples
- Inputs can be results of sub-expressions
 - Need to estimate statistics of expression results
 - To do so, we require additional statistics
 - e.g., number of distinct values for an attribute

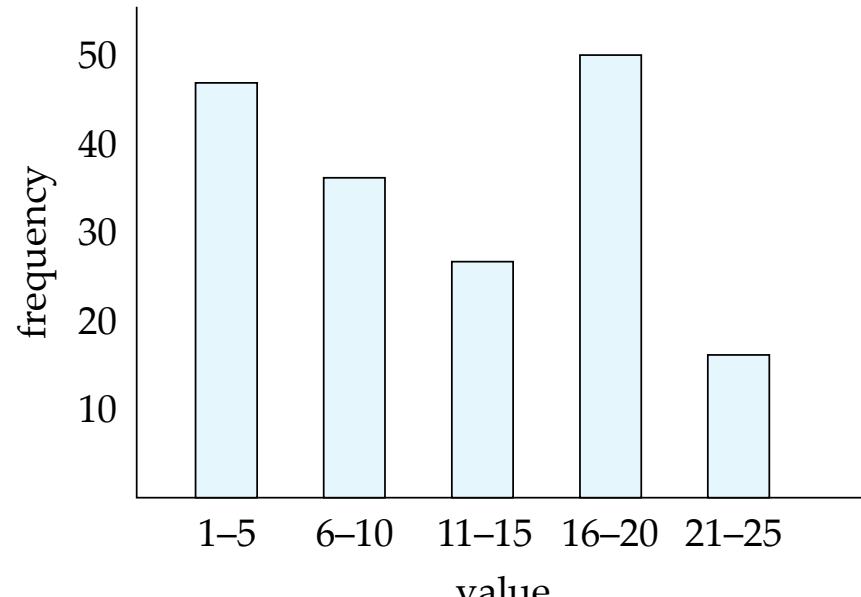
Statistical Information for Cost Estimation

- n_r : number of tuples in a relation r .
- b_r : number of blocks containing tuples of r .
- f_r : blocking factor of r , i.e. the number of tuples of r that fit into one block.
- $V(A, r)$: number of distinct values that appear in r for attribute A ; same as the size of $\prod_A(r)$.
- If tuples of r are stored together physically in a file, then:

$$b_r = \left\lceil \frac{n_r}{f_r} \right\rceil$$

Histograms

- Histogram on attribute *age* of relation *person*



- **Equi-width** histograms
- **Equi-depth** histograms break up range such that each range has (approximately) the same number of tuples
 - e.g. (4, 8, 14, 19)
- Some databases also store n **most-frequent values** and their counts
 - histogram is built on remaining values only

Histograms (Cont.)

- Histograms and other statistics usually computed based on a **random sample**
- Statistics may be out of date
 - Some databases have a command to be executed to update statistics
 - Others automatically recompute statistics
 - e.g., when number of tuples in a relation changes by some percentage

Selection Size Estimation

- $\sigma_{A=v}(r)$
 - Number of records that will satisfy the selection: $n_r / V(A, r)$
 - Equality condition on a key attribute: *size estimate* = 1
- $\sigma_{A \leq v}(r)$ (case of $\sigma_{A \geq v}(r)$ is symmetric)
 - Let c denote the estimated number of tuples satisfying the condition.
 - If $\min(A, r)$ and $\max(A, r)$ are available in catalog
 - $c = 0$ if $v < \min(A, r)$
 - $c = n_r$ if $v \geq \max(A, r)$
 - $c = n_r \cdot \frac{v - \min(A, r)}{\max(A, r) - \min(A, r)}$
 - If histograms available, can refine above estimate
 - In absence of statistical information, c is assumed to be $n_r / 2$.

Size Estimation of Complex Selections

- The **selectivity** of a condition θ_i is the probability that a tuple in the relation r satisfies θ_i .
 - If s_i is the number of satisfying tuples in r , the selectivity of θ_i is: s_i/n_r
- **Conjunction:** $\sigma_{\theta_1 \wedge \theta_2 \wedge \dots \wedge \theta_n}(r)$. *Assuming independence*, estimate of tuples in the result is:

$$n_r * \frac{s_1 * s_2 * \dots * s_n}{n_r^n}$$

- **Disjunction:** $\sigma_{\theta_1 \vee \theta_2 \vee \dots \vee \theta_n}(r)$. Estimated number of tuples:

$$n_r * \left(1 - \left(1 - \frac{s_1}{n_r} \right) * \left(1 - \frac{s_2}{n_r} \right) * \dots * \left(1 - \frac{s_n}{n_r} \right) \right)$$

- **Negation:** $\sigma_{\neg \theta_1}(r)$. Estimated number of tuples:

$$n_r * \left(1 - \frac{s_1}{n_r} \right)$$

Join Operation: Running Example

- Running example: $student \bowtie takes$
- Catalog information for join examples:
 - $n_{student} = 5000$
 - $f_{student} = 50$, which implies that $b_{student} = 5000/50 = 100$
 - $n_{takes} = 10000$
 - $f_{takes} = 25$, which implies that $b_{takes} = 10000/25 = 400$
 - $V(ID, takes) = 2500$, which implies that on average, each student who has taken a course has taken 4 courses
 - Attribute ID in $takes$ is a foreign key referencing $student$
 - $V(ID, student) = 5000$ (*primary key!*)

Estimation of the Size of Joins

- The Cartesian product $r \times s$ contains $n_r \cdot n_s$ tuples
- If $R \cap S = \emptyset$, then $r \bowtie s$ is the same as $r \times s$.
- If $R \cap S$ is a key for R , then a tuple of s will join with at most one tuple from r
 - therefore, the number of tuples in $r \bowtie s$ is no greater than the number of tuples in s .
- If $R \cap S$ is a foreign key in S referencing R , then the number of tuples in $r \bowtie s$ is exactly the same as the number of tuples in s .
 - The case for $R \cap S$ being a foreign key in R referencing S is symmetric.
- In the example query $student \bowtie takes$, ID in $takes$ is a foreign key referencing $student$
 - hence, the result has exactly n_{takes} tuples, which is 10000

Estimation of the Size of Joins (Cont.)

- If $R \cap S = \{A\}$ is not a key for R or S .

If we assume that every tuple t in R produces tuples in $R \bowtie S$, the number of tuples in $R \bowtie S$ is estimated to be:

$$\frac{n_r * n_s}{V(A,s)}$$

If the reverse is true, the estimate obtained will be:

$$\frac{n_r * n_s}{V(A,r)}$$

The lower of these two estimates is probably the more accurate one.

- Can improve on above if histograms are available

Estimation of the Size of Joins (Cont.)

- Compute the size estimates for $student \bowtie takes$ without using information about foreign keys:
 - $n_{student} = 5000$, $n_{takes} = 10000$, $V(ID, takes) = 2500$, and $V(ID, student) = 5000$
 - The two estimates are:
 - $n_{student} * n_{takes} / V(ID, takes) = 5000 * 10000 / 2500 = 20000$
 - $n_{student} * n_{takes} / V(ID, student) = 5000 * 10000 / 5000 = 10000$
 - We choose the lower estimate, which is the correct one, because not every student takes courses (only half of them do)

Size Estimation for Other Operations

- Projection: estimated size of $\prod_A(r) = V(A, r)$
- Set operations
 - For unions/intersections of selections on the same relation: rewrite and use size estimate for selections
 - e.g., $\sigma_{\theta_1}(r) \cup \sigma_{\theta_2}(r)$ can be rewritten as $\sigma_{\theta_1 \vee \theta_2}(r)$
 - For operations on different relations:
 - estimated size of $r \cup s$ = size of r + size of s .
 - estimated size of $r \cap s$ = minimum size of r and size of s .
 - estimated size of $r - s$ = r .
 - All the three estimates may be quite inaccurate, but provide upper bounds on the sizes.

Estimation of Number of Distinct Values

Selections: $\sigma_\theta(r)$

- If θ forces A to take a specified value: $V(A, \sigma_\theta(r)) = 1$.
 - e.g., $A = 3$
- If θ forces A to take on one of a specified set of values:
 $V(A, \sigma_\theta(r)) = \text{number of specified values.}$
 - e.g., $(A = 1 \vee A = 3 \vee A = 4)$
- If the selection condition θ is of the form $A \text{ op } v$
estimated $V(A, \sigma_\theta(r)) = V(A, r) * s/n_r$
 - where s/n_r is the selectivity of the selection.
- In all the other cases: use approximate estimate of
 $\min\{V(A, r), n_{\sigma_\theta(r)}\}$

Estimation of Distinct Values (Cont.)

Joins: $r \bowtie s$

- If all attributes in A are from r
 - estimated $V(A, r \bowtie s) = \min\{V(A, r), n_{r \bowtie s}\}$
- If A contains attributes $A1$ from r and $A2$ from s
 - estimated $V(A, r \bowtie s) = \min\{V(A1, r) * V(A2 - A1, s), V(A1 - A2, r) * V(A2, s), n_{r \bowtie s}\}$

Choice of Evaluation Plans

- Must consider the interaction of evaluation techniques when choosing evaluation plans
 - choosing the cheapest algorithm for each operation independently may not yield best overall algorithm. E.g.
 - merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation.
 - nested-loop join may provide opportunity for pipelining
- Practical query optimizers incorporate elements of the following two broad approaches:
 1. Search all the plans and choose the best plan in a cost-based fashion.
 2. Uses heuristics to choose a plan.

Cost-Based Optimization

- Consider finding the best join-order for $r_1 \bowtie r_2 \bowtie r_3$

$r_1 \bowtie (r_2 \bowtie r_3)$	$r_1 \bowtie (r_3 \bowtie r_2)$	$(r_2 \bowtie r_3) \bowtie r_1$	$(r_3 \bowtie r_2) \bowtie r_1$
$r_2 \bowtie (r_1 \bowtie r_3)$	$r_2 \bowtie (r_3 \bowtie r_1)$	$(r_1 \bowtie r_3) \bowtie r_2$	$(r_3 \bowtie r_1) \bowtie r_2$
$r_3 \bowtie (r_1 \bowtie r_2)$	$r_3 \bowtie (r_2 \bowtie r_1)$	$(r_1 \bowtie r_2) \bowtie r_3$	$(r_2 \bowtie r_1) \bowtie r_3$

A join tree diagram for the query $r_1 \bowtie (r_2 \bowtie r_3)$. The root node is a join symbol (diamond). It has two children, which are lines representing the relations r_2 and r_3 . The r_2 line has a join symbol node, which in turn has two children: lines for r_1 and r_3 .

A join tree diagram for the query $(r_1 \bowtie r_3) \bowtie r_2$. The root node is a join symbol (diamond). It has two children, which are lines representing the relations r_1 and r_3 . The r_1 line has a join symbol node, which in turn has two children: lines for r_2 and r_3 .

Cost-Based Optimization (Cont.)

- Now consider finding the best join-order for:

$$(r_1 \bowtie r_2 \bowtie r_3) \bowtie r_4 \bowtie r_5$$

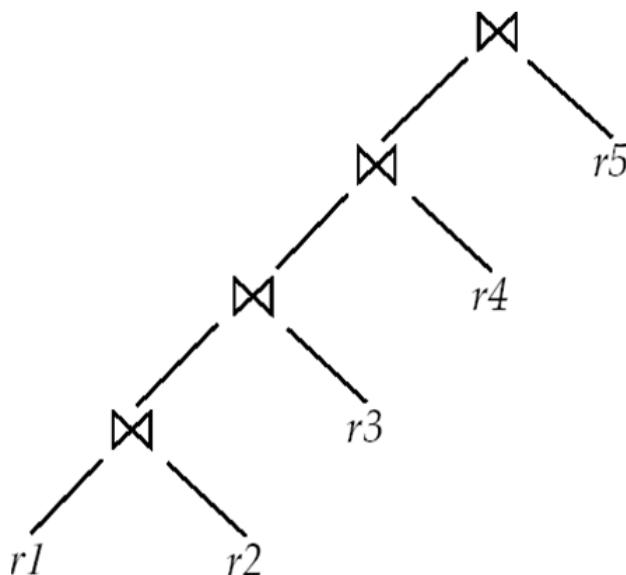
- There are 12 different join orders for $r_1 \bowtie r_2 \bowtie r_3$ and another 12 orders for $(...) \bowtie r_4 \bowtie r_5$
- Should we consider $12*12$ joins orders?
- No. Only $12+12$. We choose the best order for $r_1 \bowtie r_2 \bowtie r_3$ and the best order for $(...) \bowtie r_4 \bowtie r_5$ independently.
- When an optimization problem can be solved by optimizing sub-problems independently, we can use **dynamic programming**.

Cost-Based Optimization (Cont.)

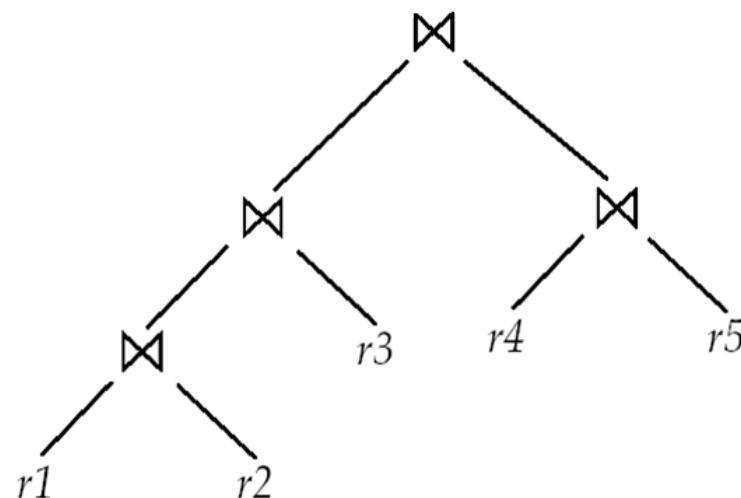
- Consider finding the best join-order for $r_1 \bowtie r_2 \bowtie \dots \bowtie r_n$.
- There are $(2(n - 1))!/(n - 1)!$ different join orders for above expression. With $n = 7$, the number is 665280, with $n = 10$, the number is greater than 176 billion!
- No need to generate all the join orders. Using dynamic programming, the least-cost join order for any subset of $\{r_1, r_2, \dots, r_n\}$ is computed only once and stored for future use.
- Find the best join order for every subset, by finding the best order for each subset of every subset, etc.
 - Do this recursively and reusing previously found solutions for each subset.

Heuristics in Optimization

- Alternatively, use heuristics
 - E.g. in **left-deep join trees**, the right-hand-side input for each join is always a relation, not the result of an intermediate join.
 - Fewer join orders to consider.



(a) Left-deep join tree



(b) Non-left-deep join tree

Heuristics in Optimization (Cont.)

- Cost-based optimization is expensive, even with dynamic programming.
- Systems may use *heuristics* to reduce the number of choices that must be made in a cost-based fashion.
- Many optimizers consider only left-deep join orders.
 - Plus heuristics to push selections and projections down the query tree.
 - Reduces optimization complexity and generates plans amenable to pipelined evaluation.

Heuristics in Optimization (Cont.)

- Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all cases) improve execution performance:
 - Perform selection early (reduces the number of tuples)
 - Perform projection early (reduces the number of attributes)
 - Perform most restrictive selection and join operations (i.e., with smallest result size) before other similar operations.
 - Some systems use only heuristics, others combine heuristics with partial cost-based optimization.

Memoization and Plan Cache

- Besides the order of operations, there are multiple algorithms to choose from (e.g. hash join, nested-loop join, merge join)
 - These algorithms are **physically equivalent** (produce the same results)
 - Choice of best plan includes optimizing the query-tree (**equivalence rules**) and choosing the best algorithms (**physical equivalence rules**)
- Concept of **memoization**
 - Store the best plan for a subexpression the first time it is optimized, and reuse it on repeated optimization calls on same subexpression
- Implemented as **plan caching**
 - Reuse previously computed plan if query is resubmitted
 - Even with different constants in query

Materialized Views

- A **materialized view** is a view whose contents are computed and stored.
- Consider the view:

```
create view my_students(ID, name) as  
select student.ID, student.name  
from student, takes  
where student.ID = takes.ID  
and takes.course_id = 'CS-347';
```

- Materializing the above view would be very useful if the list of students is required frequently

Materialized View Maintenance

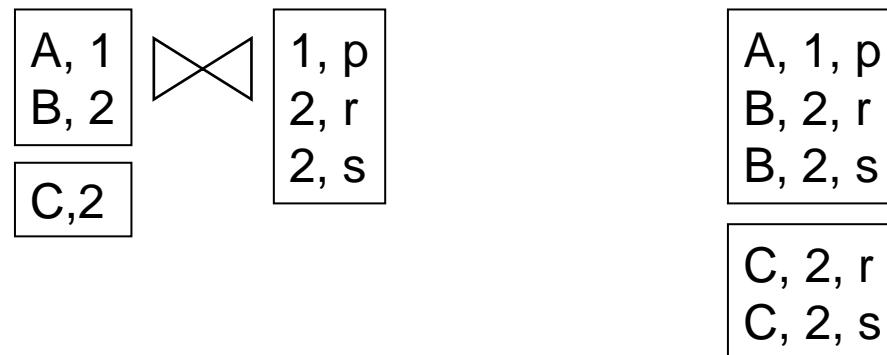
- The task of keeping a materialized view up-to-date with the underlying data is known as **materialized view maintenance**
- Materialized views can be maintained by recomputation on every update
- A better option is to use **incremental view maintenance**
 - Changes to database relations are used to compute changes to the materialized view, which is then updated
- View maintenance can be done by
 - Manually defining triggers on insert, delete, and update of each relation in the view definition
 - Manually written code to update the view whenever database relations are updated
 - Periodic recomputation (e.g. nightly)
 - Incremental maintenance supported by many database systems
 - Avoids manual effort/correctness issues

Incremental View Maintenance

- The changes (inserts and deletes) to a relation or expressions are referred to as its **differential**
 - Set of tuples inserted to and deleted from r are denoted i_r and d_r
- To simplify our description, we only consider inserts and deletes
 - We replace updates to a tuple by deletion of the tuple followed by insertion of the update tuple
- We describe how to compute the change to the result of each relational operation, given changes to its inputs
- We then outline how to handle relational algebra expressions

Join Operation

- Consider the materialized view $v = r \bowtie s$ and an update to r
- Let r^{old} and r^{new} denote the old and new states of relation r
- Consider the case of an insert to r :
 - We can write $r^{new} \bowtie s$ as $(r^{old} \cup i_r) \bowtie s$
 - And rewrite the above to $(r^{old} \bowtie s) \cup (i_r \bowtie s)$
 - But $(r^{old} \bowtie s)$ is simply the old value of the materialized view, so the incremental change to the view is just $i_r \bowtie s$
- Thus, for inserts: $v^{new} = v^{old} \cup (i_r \bowtie s)$
- Similarly for deletes: $v^{new} = v^{old} - (d_r \bowtie s)$



Selection Operation

- Selection: Consider a view $v = \sigma_{\theta}(r)$.
- We modify r by inserting a set of tuples i_r or deleting d_r
- Then:
 - $v^{new} = v^{old} \cup \sigma_{\theta}(i_r)$
 - $v^{new} = v^{old} - \sigma_{\theta}(d_r)$

Projection Operation

- Projection is a more difficult operation
 - $R = (A, B)$, and $r(R) = \{ (a, 2), (a, 3) \}$
 - $\Pi_A(r)$ has a single tuple (a) .
 - If we delete $(a, 2)$ from r , we should not delete the tuple (a) from $\Pi_A(r)$
 - but if we then delete $(a, 3)$ as well, we should delete the tuple!
- For each tuple in a projection $\Pi_A(r)$, we will keep a count of how many times it was derived
 - On insert of a tuple to r , if the resultant tuple is already in $\Pi_A(r)$ we increment its count, else we add a new tuple with count = 1
 - On delete of a tuple from r , we decrement the count of the corresponding tuple in $\Pi_A(r)$
 - if the count becomes 0, we delete the tuple from $\Pi_A(r)$

Other Operations

- Set intersection: $v = r \cap s$
 - when a tuple is inserted in r we check if it is present in s , and if so we add it to v .
 - If the tuple is deleted from r , we delete it from the intersection if it is present.
 - Updates to s are symmetric
 - The other set operations, *union* and *set difference* are handled in a similar fashion.

Query Optimization and Materialized Views

- Rewriting queries to use materialized views:
 - A materialized view $v = r \bowtie s$ is available
 - A user submits a query $r \bowtie s \bowtie t$
 - We can rewrite the query as $v \bowtie t$
 - Whether to do so depends on cost estimates for the two options
- Replacing a use of a materialized view:
 - A materialized view $v = r \bowtie s$ is available
 - User submits a query $\sigma_{A=10}(v)$ but the view has no index on A
 - Suppose r has an index on A , and s has an index on the common attribute
 - Then the best plan may be to replace v by $r \bowtie s$, which can lead to the query plan $\sigma_{A=10}(r) \bowtie s$
- Query optimizer should consider all above options and choose the best overall plan

Materialized View Creation

- **Materialized view creation:** "What is the best set of views to materialize?"
- **Index creation:** "What is the best set of indices to create?"
 - closely related, but simpler
- Materialized view creation and index creation based on typical system **workload** (queries and updates)
 - Typical goal: minimize time to execute workload , subject to constraints on space and time taken for some critical queries/updates
 - One of the steps in database tuning (more on tuning in next lectures)
- Commercial database systems provide tools (called "tuning assistants" or "wizards") to help the database administrator choose what indices and materialized views to create.