
Data Administration in Information Systems

Query processing

Query processing

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 2

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 3

Basic Steps in Query Processing (Cont.)

• Parsing and translation
– Translate the query into its internal form. This is then translated into

relational algebra.

– Parser checks syntax, verifies relations.

• Optimization
– Construct an execution plan that minimizes the cost of query evaluation.

• Evaluation
– The evaluation engine takes an execution plan, executes that plan, and

returns the answers to the query.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 4

Basic Steps in Query Processing (Cont.)

• Parsing and translation
– Translate the query into its internal form. This is then translated into

relational algebra.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 5

select salary
from instructor
where salary < 75000

salary(salary75000(instructor))

Basic Steps in Query Processing (Cont.)

• A relational algebra expression may have many equivalent
expressions

– e.g., salary75000(salary(instructor)) is equivalent to

salary(salary75000(instructor))

• Each relational algebra operation can be evaluated using one of
several different algorithms
– Correspondingly, a relational-algebra expression can be evaluated in many

ways.

• The expression specifying a detailed evaluation strategy is called
an execution plan, e.g.:

– Use an index on salary to find instructors with salary  75000,

– Or perform complete relation scan and discard instructors with salary <
75000

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 6

Basic Steps in Query Processing (Cont.)

• Query Optimization: when multiple possible execution plans are
available, choose the one with lowest cost.
– Cost is estimated using statistical information from the

database catalog

• e.g.. number of tuples in each relation, size of tuples, etc.

• Today we study
– The cost of individual operations/algorithms

– How to combine individual operations to evaluate more complex
expressions

• Next lecture
– How to optimize the entire execution plan, i.e. how to find an evaluation

plan with lowest estimated cost

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 7

Measures of Query Cost

• Disk cost can be estimated as:
– Number of seeks * average-seek-cost

– Number of blocks read * average-block-read-cost

– Number of blocks written * average-block-write-cost

• For simplicity we just use the number of block transfers from
disk and the number of seeks as the cost measures
– tT : time to transfer one block

• Assuming for simplicity that write cost is same as read cost

– tS : time for one seek

– Cost for b block transfers plus S seeks
b * tT + S * tS

• tS and tT depend on where data is stored; with 4 KB blocks:
– High end magnetic disk: tS = 4 ms and tT = 0.1 ms

– SSD: tS = 20-90 μs and tT = 2-10 μs for 4KB

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 8

Selection Operation

• File scan

• Algorithm A1 (linear search). Scan each file block and test all
records to see whether they satisfy the selection condition.
– Cost estimate = br block transfers + 1 seek

• br denotes number of blocks containing records from relation r

– If selection is on a key attribute, can stop on finding record

• cost = (br /2) block transfers + 1 seek

– Linear search can be applied regardless of

• selection condition or

• ordering of records in the file, or

• availability of indices

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 9

Selections Using Indices

• Index scan – search algorithms that use an index
– selection condition must be on search-key of index.

• A2 (clustered index, equality on key). Retrieve a single record
that satisfies the corresponding equality condition
– Cost = (hi + 1) * (tT + tS)

• A3 (clustered index, equality on non-key) Retrieve multiple
records.
– Records will be on consecutive blocks

• Let b = number of blocks containing matching records

– Cost = hi * (tT + tS) + tS + tT * b

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 10

Selections Using Indices

• A4 (non-clustered index, equality on key/non-key).
– Retrieve a single record if the search-key is a candidate key

• Cost = (hi + 1) * (tT + tS)

– Retrieve multiple records if search-key is not a candidate key

• each of n matching records may be on a different block

• Cost = (hi + n) * (tT + tS)

– Can be very expensive!

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 11

Selections Involving Comparisons

• Can implement selections of the form AV (r) or A  V (r) by using
– a linear file scan,

– or by using indices, in the following ways:

• A5 (clustered index, comparison). (Relation is sorted on A)
• For A  V (r) use index to find first tuple  V and then scan sequentially

• For AV (r) just scan sequentially till first tuple > V; do not use index

• A6 (non-clustered index, comparison).
• For A  V (r) use index to find first index entry  V and scan index

sequentially from there, to find pointers to records

• For AV (r) just scan leaf pages of index finding pointers to records, till
first entry > V

• In either case, retrieve records that are pointed to
– requires an I/O per record; linear file scan may be cheaper!

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 12

Implementation of Complex Selections

• Conjunction: 1  2  ... n(r)

• A7 (conjunctive selection using one index).

– Select a combination of i and algorithms A1 through A7 that results in the
least cost for i (r)

– Test other conditions on tuple after fetching it into memory

• A8 (conjunctive selection using composite index).
– Use appropriate composite (multiple-key) index if available.

• A9 (conjunctive selection by intersection of identifiers).
– Requires indices with record pointers.

– Use corresponding index for each condition, and take intersection of all
the obtained sets of record pointers.

– Then fetch records from file.

– If some conditions do not have appropriate indices, apply test in memory.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 13

Algorithms for Complex Selections

• Disjunction: 1  2  ... n (r)

• A10 (disjunctive selection by union of identifiers).
– Applicable if all conditions have available indices.

• Otherwise use linear scan.

– Use corresponding index for each condition, and take union of all the
obtained sets of record pointers.

– Then fetch records from file.

• Negation: (r)
– Use linear scan on file

– Or transform  into expression without negation ', and check if an index
is applicable to '

• Find satisfying records using index and fetch from file

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 14

Sorting

• We may build an index on the relation, and then use the index to
read the relation in sorted order.
– May lead to one disk block access for each tuple.

• For relations that fit in memory, techniques like quicksort can be
used.
– For relations that don’t fit in memory, external sort-merge is a good

choice.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 15

Example: External Sorting Using Sort-Merge

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 16

g

a

d 31

c 33

b 14

e 16

r 16

d 21

m 3

p 2

d 7

a 14

a 14

a 19

b 14

c 33

d 7

d 21

d 31

e 16

g 24

m 3

p 2

r 16

a 19

b 14

c 33

d 31

e 16

g 24

a 14

d 7

d 21

m 3

p 2

r 16

a 19

d 31

g 24

b 14

c 33

e 16

d 21

m 3

r 16

a 14

d 7

p 2
initial

relation
create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24

19

External Sort-Merge

Let M denote memory size (in pages).

1. Create sorted runs. Let i be 0 initially.
Repeatedly do the following till the end of the relation:
(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks
(c) Write sorted data to run Ri; increment i.

Let the final value of i be N

2. Merge the runs (next slide)…..

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 17

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge).

We assume (for now) that N < M.
1. Use N blocks of memory to buffer input runs, and 1 block to buffer

output. Read the first block of each run into its buffer page

2. repeat

1. Select the first record (in sort order) among all buffer pages

2. Write the record to the output buffer. If the output buffer is full write
it to disk.

3. Delete the record from its input buffer page.
If the buffer page becomes empty then

read the next block (if any) of the run into the buffer.

3. until all input buffer pages are empty.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 18

External Sort-Merge (Cont.)

• If N  M, several merge passes are required.
– In each pass, contiguous groups of M-1 runs are merged.

– A pass reduces the number of runs by a factor of M-1, and creates runs
longer by the same factor.

• E.g. If M=11, and there are 90 runs, one pass reduces the number of
runs to 9, each 10 times the size of the initial runs

– Repeated passes are performed till all runs have been merged into one.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 19

External Sort-Merge (Cont.)

• Cost analysis:
– The number of blocks in relation r is: br

– To create the initial runs, read and write every block: 2br block transfers

– The number of initial runs is: br /M

– Each merge pass decreases the number of runs by a factor of M-1

– The total number of merge passes is: logM–1(br /M)

– Each merge pass reads and writes every block: 2br block transfers

– For the final pass we discount the write cost: -br

• we ignore the final write cost since the output may be sent to the
parent operation without being written to disk

– The total number of block transfers is:

2br + 2br logM–1(br /M) - br =

br (2 logM–1(br /M) + 1)

– Seeks: next slide

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 20

External Sort-Merge (Cont.)

• Cost of seeks
– During run generation: one seek to read each run and one seek to write

each run

• 2 br /M

– During the merge phase

• Need 2br seeks for each merge pass

• Except the final one which does not require a write

– The total number of seeks is:

2 br /M + 2br logM–1(br /M) - br =

2 br /M + br (2 logM–1(br /M) - 1)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 21

Join Operation

• Several different algorithms to implement joins
– Nested-loop join

– Block nested-loop join

– Indexed nested-loop join

– Merge-join

– Hash-join

• Choice based on cost estimate

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 22

Nested-Loop Join

• To compute the theta-join: r⨝ s

for each tuple tr in r
for each tuple ts in s

test pair (tr , ts) to see if they satisfy the join condition 
if they do, add tr • ts to the result

end
end

• r is called the outer relation and s the inner relation of the join.

• Requires no indices and can be used with any kind of join
condition.

• Expensive since it examines every pair of tuples in the two
relations.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 23

Nested-Loop Join (Cont.)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 24

• In the worst case, if there is enough memory only to hold one
block of each relation, the estimated cost is:

– Block transfers: br + nrbs

– Seeks: br + nr

• If the smaller relation fits entirely in memory, use that as the
inner relation. Reduces cost to:
– Block transfers: br + bs

– Seeks: 2

• Block nested-loops algorithm (next slide) is preferable.

Block Nested-Loop Join

• Variant of nested-loop join in which every block of inner relation
is paired with every block of outer relation:

for each block Br of r
for each block Bs of s

for each tuple tr in Br

for each tuple ts in Bs

check if (tr , ts) satisfy the join condition
if they do, add tr • ts to the result

end
end

end
end

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 25

Block Nested-Loop Join (Cont.)

• Worst case estimate:
– Block transfers: br + brbs

– Seeks: br + br = 2br

• Each block in the inner relation s is read once for each block in
the outer relation

• Best case, if the inner relation fits in memory:
– Block transfers: br + bs

– Seeks: 2

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 26

Block Nested-Loop Join (Cont.)

• Improvements to nested loop and block nested loop algorithms:
– In block nested-loop, use M-2 disk blocks for outer relation, and use

remaining two blocks to buffer inner relation and output:

• Block transfers: br + br /(M-2)  bs

• Seeks: 2 br /(M-2)

– If equi-join attribute forms a key or inner relation, stop inner loop on first
match

– Scan inner loop forward and backward alternately, to make use of the
blocks remaining in buffer (with LRU replacement)

– Use index on inner relation if available (next slide)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 27

Indexed Nested-Loop Join

• Index lookups can replace file scans if
– join is an equi-join or natural join and

– an index is available on the inner relation's join attribute

• might also construct an index just to compute the join

• E.g. to compute the natural join: r⨝ s

for each tuple tr in r
use index on s to find matching tuple ts

add tr • ts to the result
end

for each block Br of r
for each tuple tr in Br

use index on s to find matching tuple ts

add tr • ts to the result
end

end

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 28

Indexed Nested-Loop Join (Cont.)

• For each tuple tr in the outer relation r, use the index to look up
tuples in s that satisfy the join condition with tuple tr

• Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.

• Cost of the join: br (tT + tS) + nr  c
– where c is the cost of traversing index and fetching all matching s tuples

for one tuple or r

– c can be estimated as cost of a single selection on s using the join
condition.

• If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 29

Merge-Join

1. Sort both relations on their join attribute (if not already sorted
on the join attributes)

2. Merge the sorted relations to join them
– Join step is similar to the merge stage of the sort-merge algorithm

– Main difference is handling of duplicate values in join attribute – every
pair with same value on join attribute must be matched

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 30

Merge-Join (Cont.)

• Can be used only for equi-joins and natural joins

• Each block needs to be read only once (assuming all tuples for
any given value of the join attributes fit in memory)

• Thus the cost of merge join is:
– Block transfers: br + bs

– Seeks: br /bb + bs /bb , if we can read bb blocks at once into memory

– Plus the cost of sorting if relations are unsorted!

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 31

Merge-Join (Cont.)

• Hybrid merge-join: If one relation is sorted, and the other has a
secondary B+-tree index on the join attribute
– Merge the sorted relation with the leaf entries of the B+-tree

– Result contains tuples from the sorted relation and addresses for tuples of
the unsorted relation

– Sort the result on the addresses of the unsorted relation's tuples

– Scan the unsorted relation in physical address order and merge with
previous result, replacing addresses by the actual tuples

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 32

Hash-Join

• Applicable for equi-joins and natural joins

• r and s have common attributes to be used in the natural join

• A hash function h is used to partition tuples of both relations

• h maps attribute values to buckets or partitions {0, 1, ..., n}
– r0 , r1 , …, rn denote partitions of relation r

• each tuple tr  r is put in partition ri where i = h(tr)

– s0 , s1 , ..., sn denote partitions of relation s

• each tuple ts  s is put in partition si where i = h(ts)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 33

Hash-Join (Cont.)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 34

Hash-Join (Cont.)

• Tuples in ri need only to be compared with tuples in si

• No need to compare tuples in ri with tuples in sj (i ≠ j) since:
– an r tuple and an s tuple that satisfy the join condition will have the same

value for the join attributes

– if that value is hashed to some value i, the r tuple has to be in ri and the s
tuple in si

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 35

Hash-Join (Cont.)

• Partitioning the two relations r and s requires reading and writing
every block: 2(br + bs)

• Comparing the tuples in the partitions requires reading them
once more: br + bs

• As a result of the partitioning, there can be some partially filled
blocks
– Each partition could have an extra block, and there nh partitions

– These extra blocks must be written (when partitioning) and read (when
comparing)

– There are two relations being partitioned

• Therefore, the cost of the hash-join is:
– Block transfers: 3(br + bs) + 4nh

– Seeks: 2(br + bs) + 2nh

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 36

Hash-Join (Cont.)

• If the number of partitions nh is larger than memory M then we
need to use recursive partitioning
– Instead of partitioning nh ways, use M-1 partitions

– Further partition the M-1 partitions using a different hash function

– The number of passes is logM–1(br /M)

• The cost with recursive partitioning would be:
– Block transfers: 2(br + bs) logM–1(br /M) + (br + bs) + ...

– Seeks: 2(br + bs) logM–1(br /M) + ...

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 37

Complex Joins

• Join with a conjunctive condition:

r ⨝ 1  2  ...  n s
– Either use nested loops/block nested loops, or

– Compute one of the simpler joins r ⨝ i s

• then check which tuples satisfy the remaining conditions

1 . . .  i –1  i +1  . . .  n

• Join with a disjunctive condition

r ⨝ 1  2 ...  n
s

– Either use nested loops/block nested loops, or

– Compute each join separately

• then union of records in individual joins r ⨝ i
s:

(r ⨝ 1
s)  (r ⨝ 2

s)  . . .  (r ⨝ n
s)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 38

Other Operations

• Duplicate elimination (DISTINCT) can be implemented via
hashing or sorting.
– On sorting duplicates will come adjacent to each other, and all but one set

of duplicates can be deleted.

– Optimization: duplicates can be deleted during run generation as well as at
intermediate merge steps in external sort-merge.

– Hashing is similar – duplicates will come into the same bucket.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 39

Other Operations (Cont.)

• Aggregation (GROUP BY) can be implemented in a manner
similar to duplicate elimination.
– Sorting or hashing can be used to bring tuples in the same group together,

and then the aggregate functions can be applied on each group.

– Optimization: partial aggregation

• combine tuples in the same group during run generation and
intermediate merges, by computing partial aggregate values

• For count, min, max, sum: keep aggregate values on tuples found so
far in the group.

– When combining partial aggregate for count, add up the partial
aggregates

• For avg, keep sum and count, and divide sum by count at the end

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 40

Evaluation of Expressions

• So far: we have seen algorithms for individual operations

• Alternatives for evaluating an entire expression tree
– Materialization: generate results of an expression whose inputs are

relations or are already computed, materialize (store) it on disk. Repeat.

– Pipelining: pass on tuples to parent operations even as an operation is
being executed

• We study above alternatives in more detail

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 41

Materialization

• Materialized evaluation: evaluate one operation at a time,
starting at the lowest-level. Use intermediate results
materialized into temporary relations to evaluate next-level
operations.
– e.g., in figure below, compute and store

– then compute and store its join with instructor, and finally compute the
projection on name.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 42

)("Watson" departmentbuilding=

Materialization (Cont.)

• Materialized evaluation is always applicable

• Cost of writing results to disk and reading them back can be high
– Our cost formulas for operations ignore cost of writing results to disk, so

• Overall cost = sum of costs of individual operations +
cost of writing intermediate results to disk

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 43

Pipelining

• Pipelined evaluation: evaluate several operations
simultaneously, passing the results of one operation to the next.
– e.g., in previous expression tree, don't store result of

– instead, pass tuples directly to the join. Similarly, don't store result of join,
pass tuples directly to projection.

• Much cheaper than materialization: no need to store a
temporary relation to disk.

• Pipelining may not always be possible – e.g., sort, hash-join.

• For pipelining, use evaluation algorithms that generate output
tuples even as tuples are received for inputs to the operation.

• Pipelines can be executed in two ways: demand driven and
producer driven

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 44

)("Watson" departmentbuilding=

Pipelining (Cont.)

• In demand-driven evaluation
– System repeatedly requests next tuple from top level operation

– Each operation requests next tuple from children operations as required

– In between calls, operation has to maintain "state" so it knows what to
return next

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 45

Pipelining (Cont.)

• In producer driven pipelining
– Operators produce tuples eagerly and pass them up to their parents

• Buffer maintained between operators, child puts tuples in buffer,
parent removes tuples from buffer

• If buffer is full, child waits till there is space in the buffer, and then
generates more tuples

– System schedules operations that have space in output buffer and can
process more input tuples

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 46

Blocking Operations

• Blocking operations: cannot generate any output until all input is
consumed
– e.g., sorting, aggregation, …

• But can often consume inputs from a pipeline, or produce
outputs to a pipeline

• Key idea: blocking operations often have two suboperations
– e.g., for sorting: run generation and merge

• Treat them as separate operations

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 47

Blocking Operations (Cont.)

• Pipeline stages:
– All operations in a stage run concurrently

– A stage can start only after preceding stages have completed execution

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 48

Pipelining for Continuous-Stream Data

• Data streams
– Data entering database in a continuous manner

– E.g., sensor networks, user clicks, …

• Continuous queries
– Results get updated as streaming data enters the database

– Aggregation on windows is often used

• e.g., tumbling windows divide time into units, e.g., hours, minutes

• Need to use pipelined processing algorithms
– Punctuations used to infer when all data for a window has been received

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 49

	Slide 1: Data Administration in Information Systems
	Slide 2: Query processing
	Slide 3: Basic Steps in Query Processing
	Slide 4: Basic Steps in Query Processing (Cont.)
	Slide 5: Basic Steps in Query Processing (Cont.)
	Slide 6: Basic Steps in Query Processing (Cont.)
	Slide 7: Basic Steps in Query Processing (Cont.)
	Slide 8: Measures of Query Cost
	Slide 9: Selection Operation
	Slide 10: Selections Using Indices
	Slide 11: Selections Using Indices
	Slide 12: Selections Involving Comparisons
	Slide 13: Implementation of Complex Selections
	Slide 14: Algorithms for Complex Selections
	Slide 15: Sorting
	Slide 16: Example: External Sorting Using Sort-Merge
	Slide 17: External Sort-Merge
	Slide 18: External Sort-Merge (Cont.)
	Slide 19: External Sort-Merge (Cont.)
	Slide 20: External Sort-Merge (Cont.)
	Slide 21: External Sort-Merge (Cont.)
	Slide 22: Join Operation
	Slide 23: Nested-Loop Join
	Slide 24: Nested-Loop Join (Cont.)
	Slide 25: Block Nested-Loop Join
	Slide 26: Block Nested-Loop Join (Cont.)
	Slide 27: Block Nested-Loop Join (Cont.)
	Slide 28: Indexed Nested-Loop Join
	Slide 29: Indexed Nested-Loop Join (Cont.)
	Slide 30: Merge-Join
	Slide 31: Merge-Join (Cont.)
	Slide 32: Merge-Join (Cont.)
	Slide 33: Hash-Join
	Slide 34: Hash-Join (Cont.)
	Slide 35: Hash-Join (Cont.)
	Slide 36: Hash-Join (Cont.)
	Slide 37: Hash-Join (Cont.)
	Slide 38: Complex Joins
	Slide 39: Other Operations
	Slide 40: Other Operations (Cont.)
	Slide 41: Evaluation of Expressions
	Slide 42: Materialization
	Slide 43: Materialization (Cont.)
	Slide 44: Pipelining
	Slide 45: Pipelining (Cont.)
	Slide 46: Pipelining (Cont.)
	Slide 47: Blocking Operations
	Slide 48: Blocking Operations (Cont.)
	Slide 49: Pipelining for Continuous-Stream Data

