Data Administration in Information Systems

uery processing

SEVENTH EDITION

X Contents
Database System Concepts PARTFIVE B STORAGE MANAGEMENT AND
INDEXING
Chapter 12 Physical Storage Systems
12.1 Overview of Physical Storage Media 359 12.6 Disk-Block Access 577
12.2 Storage Interfaces 562 12.7 Summary 580
12.3 Magnetic Disks 563 Exercises 582
12.4 Flash Memory 567 Further Reading 584
125 RAID 570

Chapter 13 Data Storage Structures

13.1 Database Storage Architecture 587 13.7 Storage Organization in Main-Memory
13.2 File Organization 588 Databases 615

13.3 Organization of Records in Files 595 13.8 Summary 617

13.4 Data-Dictionary Storage 602 Exercises 619

13.5 Database Buffer 604 Further Reading 621

13.6 Column-Oriented Storage 611

Chapter 14 Indexing

14.1 Basic Concepts 623 14.8 Write-Optimized Index Structures 6635
14.2 Ordered Indices 625 14.9 Bitmap Indices 670
14.3 B*Tree Index Files 634 14.10 Indexing of Spatial and Temporal Data 672
144 B*-Tree Extensions 650 14.11 Summary 677
14.5 Hash Indices 638 Exercises 679
14.6 Multiple-Key Access 661 Further Reading 683
= - S 14.7 Creation of Indices 664
~ - Abraham Silberschatz..
— Henry F. Korth -
PART SIX H QUERY PROCESSING AND
OPTIMIZATION
Chapter 15 Query Processing
15.1 Overview 689 15.7 Evaluation of Expressions 724
15.2 Measures of Query Cost 692 15.8 Query Processing in Memory 731
15.3 Selection Operation 695 15.9 Summary 734
15.4 Sorting 701 Exercises 736
15.5 Join Operation 704 Further Reading 740

15.6 Other Operations 719

]
Education

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

IST, MEIC/MECD/METI

query |

query
output

parser and
translator

expression

relational-algebra

<

evaluation engine 'execution plan

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

-

statistics
about data

Basic Steps in Query Processing (Cont.)

e Parsing and translation

— Translate the query into its internal form. This is then translated into
relational algebra.

— Parser checks syntax, verifies relations.
* Optimization
— Construct an execution plan that minimizes the cost of query evaluation.

 Evaluation

— The evaluation engine takes an execution plan, executes that plan, and
returns the answers to the query.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Basic Steps in Query Processing (Cont.)

e Parsing and translation

— Translate the query into its internal form.

relational algebra.

This is then translated into

10101 |Srinivasan | Comp. Sci. | 65000

12121 |Wu Finance 90000
select salary 15151 |Mozart | Music 40000
from instructor 22222 | Einstein Physics 95000

32343 |El Said History 60000
where salary < 75000 33456 |Gold Physics 87000

45565 |Katz Comp. Sci. | 75000

58583 | Califieri History 62000

76543 |Singh Finance 80000

76766 |Crick Biology 72000

83821 |Brandt Comp. Sci. | 92000 -

98345 |Kim Elec. Eng. | 80000]

J AVAVAVAVAVAVAVAVAVAVAY

1_[salclry(c5501/c1ry<75000(i nstructor))

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Basic Steps in Query Processing (Cont.)

* Arelational algebra expression may have many equivalent
expressions

— e.g., Gsa/ary<75000(Hsa/ary(i”StrUCtor)) is equivalent to
1—[sa/ary(Gsalary<75000(i nstructor))
* Each relational algebra operation can be evaluated using one of
several different algorithms
— Correspondingly, a relational-algebra expression can be evaluated in many
ways.
* The expression specifying a detailed evaluation strategy is called
an execution plan, e.g.:
— Use an index on salary to find instructors with salary > 75000,

— Or perform complete relation scan and discard instructors with salary <
75000

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Basic Steps in Query Processing (Cont.)

* Query Optimization: when multiple possible execution plans are
available, choose the one with lowest cost.

— Cost is estimated using statistical information from the
database catalog

* e.g.. number of tuples in each relation, size of tuples, etc.
* Today we study

— The cost of individual operations/algorithms

— How to combine individual operations to evaluate more complex
expressions

e Next lecture

— How to optimize the entire execution plan, i.e. how to find an evaluation
plan with lowest estimated cost

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Measures of Query Cost

* Disk cost can be estimated as:
— Number of seeks * average-seek-cost
— Number of blocks read * average-block-read-cost
— Number of blocks written * average-block-write-cost

* For simplicity we just use the number of block transfers from
disk and the number of seeks as the cost measures
— t,:time to transfer one block
* Assuming for simplicity that write cost is same as read cost
— tg: time for one seek
— Cost for b block transfers plus S seeks
b*t +S*t

* t.and t; depend on where data is stored; with 4 KB blocks:

— High end magnetic disk: t. =4 ms and t; =0.1 ms

— SSD: t.=20-90 ps and t; = 2-10 ps for 4KB

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Selection Operation

* File scan

e Algorithm Al (linear search). Scan each file block and test all

records to see whether they satisfy the selection condition.

— Cost estimate = b, block transfers + 1 seek

* b, denotes number of blocks containing records from relation r

— If selection is on a key attribute, can stop on finding record

* cost = (b,/2) block transfers + 1 seek
— Linear search can be applied regardless of

* selection condition or

e ordering of records in the file, or

 availability of indices

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

10101

Srinivasan

Comp. Sci.

65000

12121 |Wu Finance 90000

15151 |Mozart Music 40000

22222 |Einstein Physics 95000

32343 |El Said History 60000 4
33456 |Gold Physics 87000 =
45565 |Katz Comp. Sci. | 75000 —
58583 | Califieri History 62000 .
76543 |Singh Finance 80000 -
76766 | Crick Biology 72000 —
83821 |Brandt Comp. Sci. | 92000 =
98345 |Kim Elec. Eng. | 80000 1

JVVVVVVVVVVV

Selections Using Indices

* Index scan —search algorithms that use an index

— selection condition must be on search-key of index.

* A2 (clustered index, equality on key). Retrieve a single record
that satisfies the corresponding equality condition
— Cost=(h,+1)* (t;+ t)
* A3 (clustered index, equality on non-key) Retrieve multiple
records.
— Records will be on consecutive blocks
* Let b = number of blocks containing matching records
— Cost=h, *(t;+t)+t;+t;*b

10101 10101 |Srinivasan | Comp. Sci. | 65000 1 Biology 76766 | Crick Biology 72000 —
12121 | —| 12121 |Wu Finance 90000 i Comp. Sci. 10101 | Srinivasan| Comp. Sci. 65000 ~7
15151 15151 |Mozart Music 40000 ﬁ7 Elec. Eng. 45565 | Katz Comp. Sci. | 75000 i

22222 22222 [Binstein | Physics | 95000 | 1< Finance \ 83821 | Brandt | Comp. Sci. | 92000 1
32343 32343 |El Said History 60000 ;7 History \ 98345 | Kim Elec. Eng. 80000 _7
33456 33456 | Gold Physics 87000 *7 Music 12121 | Wu Finance 90000 _7
45565 45565 |Katz Comp. Sci. | 75000 1 Physics 76543 | Singh Finance 80000 1
58583 58583 |Califieri | History 62000 *7 32343 | El Said History 60000 _7
76543 76543 |Singh Finance 80000 *7 58583 | Califieri | History 62000 ‘7
76766 76766 |Crick Biology 72000 1 15151 | Mozart Music 40000 1
83821 83821 |Brandt Comp. Sci. | 92000 e 22222 | Einstein | Physics 95000 1
98345 98345 |Kim Elec. Eng. | 80000 77 33465 | Gold Physics 87000 | <

€ L

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Selections Using Indices

* A4 (non-clustered index, equality on key/non-key).
— Retrieve a single record if the search-key is a candidate key
* Cost=(h;+1)* (t;+t)
— Retrieve multiple records if search-key is not a candidate key
* each of n matching records may be on a different block
* Cost= (h,+n)*(t;+tJ)

— Can be very expensive!

=

40000 10101 | Srinivasan | Comp. Sci. | 65000 —P
60000 12121 | Wu Finance 90000 =
62000 15151 |Mozart | Music 40000 |
65000 | 1 22222 |Einstein | Physics 95000 | <
72000 | 32343 [EISaid |History | 60000 | _l
;(5)888 = 33456 | Gold Physics | 87000 _g
87000 45565 | Katz Comp. Sci. | 75000 =
90000 58583 | Califieri | History 62000 =
92000 76543 | Singh Finance 80000 -
95000 76766 | Crick Biology 72000 _P
83821 |Brandt Comp. Sci. | 92000 _7
98345 | Kim Elec. Eng. | 80000 _?

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 11

Selections Involving Comparisons

* Canimplement selections of the form 6, (r) or 6, (r) by using
— alinear file scan,
— or by using indices, in the following ways:

* A5 (clustered index, comparison). (Relation is sorted on A)
* For o, .,(r) use index to find first tuple > V and then scan sequentially
* For o, (r) just scan sequentially till first tuple > V; do not use index

e A6 (non-clustered index, comparison).

* For o, .,(r) use index to find first index entry > V and scan index
sequentially from there, to find pointers to records

* For o, (r) just scan leaf pages of index finding pointers to records, till
first entry > V

* In either case, retrieve records that are pointed to
— requires an 1/O per record; linear file scan may be cheaper!

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

12

Implementation of Complex Selections

* Conjunction: Gy, , o5« g,(F)

* A7 (conjunctive selection using one index).
— Select a combination of 6, and algorithms Al through A7 that results in the
least cost for G, (r)
— Test other conditions on tuple after fetching it into memory
A8 (conjunctive selection using composite index).

— Use appropriate composite (multiple-key) index if available.

A9 (conjunctive selection by intersection of identifiers).

— Requires indices with record pointers.

— Use corresponding index for each condition, and take intersection of all
the obtained sets of record pointers.

— Then fetch records from file.
— |f some conditions do not have appropriate indices, apply test in memory.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Algorithms for Complex Selections

* Disjunction: 64, g, g, (r)
* A10 (disjunctive selection by union of identifiers).

— Applicable if all conditions have available indices.
e Otherwise use linear scan.

— Use corresponding index for each condition, and take union of all the
obtained sets of record pointers.

— Then fetch records from file.
* Negation: c_,(r)
— Use linear scan on file

— Or transform —0 into expression without negation 0', and check if an index
is applicable to 0"

* Find satisfying records using index and fetch from file

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

14

Sorting

* We may build an index on the relation, and then use the index to
read the relation in sorted order.

— May lead to one disk block access for each tuple.

* For relations that fit in memory, techniques like quicksort can be
used.

— For relations that don’t fit in memory, external sort-merge is a good
choice.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

15

Example: External Sorting Using Sort-Merge

a (19 al19
g (24 d |31 bl14 a|l4
3 19 g 24 \ <133 a|19
31 5 i "4 a1 b |14
o B e | P
e |16 g 24 a7
e |16 d|21
d| 7
m| 3 g |24
r (16
b 2 d| 21 ol 3
d| 7 a 14 f m) pl 2
a |14 dl 7 p| 2 r |16
bl 2 r (16
initial sorted
relation runs runs output
create merge merge

runs pass—1 pass—2

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

External Sort-Merge

Let M denote memory size (in pages).
1. Create sorted runs. Let/be O initially.

Repeatedly do the following till the end of the relation:

(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks
(c) Write sorted data to run R;; increment i.

Let the final value of i be N
2. Merge the runs (next slide).....

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

17

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge).

We assume (for now) that N < M.
Use N blocks of memory to buffer input runs, and 1 block to buffer
output. Read the first block of each run into its buffer page

repeat
1. Select the first record (in sort order) among all buffer pages

2. Write the record to the output buffer. If the output buffer is full write
it to disk.

3. Delete the record from its input buffer page.
If the buffer page becomes empty then
read the next block (if any) of the run into the buffer.

until all input buffer pages are empty.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

18

External Sort-Merge (Cont.)

* If N> M, several merge passes are required.
— In each pass, contiguous groups of M-1 runs are merged.

— A pass reduces the number of runs by a factor of M-1, and creates runs
longer by the same factor.

* E.g. If M=11, and there are 90 runs, one pass reduces the number of
runs to 9, each 10 times the size of the initial runs

— Repeated passes are performed till all runs have been merged into one.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

19

External Sort-Merge (Cont.)

e Cost analysis:

The number of blocks in relation ris: b,

To create the initial runs, read and write every block: 2b, block transfers
The number of initial runs is:[b, /M |

Each merge pass decreases the number of runs by a factor of M-1

The total number of merge passes is:| log,,_,(b,/M) |

Each merge pass reads and writes every block: 2b, block transfers

For the final pass we discount the write cost: -b,

* we ignore the final write cost since the output may be sent to the
parent operation without being written to disk

The total number of block transfers is:
2b,+2b [log,, ,(b./M)]-b, =
b,(2[logy, (b, /M)]+ 1)
Seeks: next slide

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

20

External Sort-Merge (Cont.)

e (Cost of seeks

— During run generation: one seek to read each run and one seek to write
each run

« 2[b,/M]
— During the merge phase
* Need 2b, seeks for each merge pass
* Except the final one which does not require a write
— The total number of seeks is:
2[b./M1+2b [log,, ,(b,/M)]-b, =
2[b,/M1+ b, (2] log,,,(b,/M)1- 1)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

21

Join Operation

* Several different algorithms to implement joins
— Nested-loop join
— Block nested-loop join
— Indexed nested-loop join
— Merge-join
— Hash-join

e Choice based on cost estimate

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Nested-Loop Join

* To compute the theta-join: r <, s

for each tuple t.inr
for each tuplet, ins
test pair (t,, t,) to see if they satisfy the join condition 0
if they do, add t, * t_ to the result
end
end

r is called the outer relation and s the inner relation of the join.

* Requires no indices and can be used with any kind of join
condition.

* Expensive since it examines every pair of tuples in the two
relations.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 23

Nested-Loop Join (Cont.)

* In the worst case, if there is enough memory only to hold one
block of each relation, the estimated cost is:
— Block transfers: b.+ n*b,
— Seeks: b+ n,

* If the smaller relation fits entirely in memory, use that as the
inner relation. Reduces cost to:
— Block transfers: b+ b,

— Seeks: 2
* Block nested-loops algorithm (next slide) is preferable.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

24

Block Nested-Loop Join

* Variant of nested-loop join in which every block of inner relation
is paired with every block of outer relation:

for each block B, of r
for each block B, of s
for each tuple t.in B,
for each tuple t. in B,
check if (t,, t.) satisfy the join condition
if they do, add t, » t_ to the result
end
end
end
end

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

25

Block Nested-Loop Join (Cont.)

Worst case estimate:

— Block transfers: b, + b, *b,

— Seeks: b, + b, = 2%b,

Each block in the inner relation s is read once for each block in
the outer relation

Best case, if the inner relation fits in memory:

— Block transfers: b, + b,
— Seeks: 2

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

26

Block Nested-Loop Join (Cont.)

* Improvements to nested loop and block nested loop algorithms:

— In block nested-loop, use M-2 disk blocks for outer relation, and use
remaining two blocks to buffer inner relation and output:

« Block transfers: b, +| b./(M-2) | * b,
e Seeks: 2x[b./(M-2)]

— If equi-join attribute forms a key or inner relation, stop inner loop on first
match

— Scan inner loop forward and backward alternately, to make use of the
blocks remaining in buffer (with LRU replacement)

— Use index on inner relation if available (next slide)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 27

Indexed Nested-Loop Join

* Index lookups can replace file scans if
— join is an equi-join or natural join and
— anindex is available on the inner relation's join attribute
* might also construct an index just to compute the join

* E.g.to compute the natural join: r>ds

for each tuple t.inr
use index on s to find matching tuple t,
add t, ¢ t_to the result

end

for each block B, of r
for each tuple t.in B,
use index on s to find matching tuple t,
add t, e t_to the result
end
end

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

28

Indexed Nested-Loop Join (Cont.)

* Foreach tuple t, in the outer relation r, use the index to look up
tuples in s that satisfy the join condition with tuple t,

* Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.

* Cost of the join: b, (t;+t;) +n, *c
— where cis the cost of traversing index and fetching all matching s tuples
for one tuple orr
— c can be estimated as cost of a single selection on s using the join
condition.
* Ifindices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Merge-Join

1. Sort both relations on their join attribute (if not already sorted
on the join attributes)

2. Merge the sorted relations to join them
— Join step is similar to the merge stage of the sort-merge algorithm

— Main difference is handling of duplicate values in join attribute — every
pair with same value on join attribute must be matched

al a2 al a3 -
L al3 &a A EE
b1 b|G =
e ¢ L =
|13 d [N =
f |7 m | B Eg
m| 5 S =
])

,§

rrrryy
\

pes

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Merge-Join (Cont.)

* (Can be used only for equi-joins and natural joins

* Each block needs to be read only once (assuming all tuples for
any given value of the join attributes fit in memory)

* Thus the cost of merge join is:

— Block transfers: b, + b,
— Seeks: |_b,/bb—| + |_b5/bb—| , if we can read b, blocks at once into memory

— Plus the cost of sorting if relations are unsorted!

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

31

Merge-Join (Cont.)

* Hybrid merge-join: If one relation is sorted, and the other has a
secondary B*-tree index on the join attribute
— Merge the sorted relation with the leaf entries of the B*-tree

— Result contains tuples from the sorted relation and addresses for tuples of
the unsorted relation

— Sort the result on the addresses of the unsorted relation's tuples

— Scan the unsorted relation in physical address order and merge with
previous result, replacing addresses by the actual tuples

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Hash-Join

* Applicable for equi-joins and natural joins
* rand s have common attributes to be used in the natural join
* A hash function h is used to partition tuples of both relations

* h maps attribute values to buckets or partitions {0, 1, ..., n}
— 1y, 4, ..., I, denote partitions of relation r
* each tuple t, € ris putin partition r,where i = h(t,)
— Sy, 54, ---, S, denote partitions of relation s
* each tuple t, € sis put in partition s; where i = h(t,)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

33

Hash-Join (Cont.)

IST, MEIC/MECD/METI

A
Y

0
><
1

: 2
3

4

A
Y

A
Y

A
Y

A
Y

partitions partitions
of r of s

Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

0
*\ _
1
2 |
3
4

34

Hash-Join (Cont.)

* Tuplesinr;need only to be compared with tuplesin s;

* No need to compare tuples in r; with tuples in s; (i # j) since:

— anrtuple and an s tuple that satisfy the join condition will have the same
value for the join attributes

— if that value is hashed to some value j, the r tuple has to be in r;and the s
tuplein s,

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

35

Hash-Join (Cont.)

e Partitioning the two relations r and s requires reading and writing
every block: 2*(b, + b,)

 Comparing the tuples in the partitions requires reading them
once more: b, + b,

* As aresult of the partitioning, there can be some partially filled
blocks
— Each partition could have an extra block, and there n, partitions

— These extra blocks must be written (when partitioning) and read (when
comparing)
— There are two relations being partitioned

* Therefore, the cost of the hash-join is:
— Block transfers: 3%(b, + b,) + 4%n,
— Seeks: 2%(b, + b,) + 2*n,

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 36

Hash-Join (Cont.)

* If the number of partitions n, is larger than memory M then we
need to use recursive partitioning
— Instead of partitioning n, ways, use M-1 partitions
— Further partition the M-1 partitions using a different hash function
— The number of passes is| log,,_,(b,/M) |
* The cost with recursive partitioning would be:

— Block transfers: 2(b, + b,) |_IogM_1(b,/M)_| +(b,+b,)+...
— Seeks: 2(b,+ b,) | log,,_.(b,/M) | + ...

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

37

Complex Joins

* Join with a conjunctive condition:

r 01 AO2A...A 0N S
— Either use nested loops/block nested loops, or

— Compute one of the simpler joins r > g s
* then check which tuples satisfy the remaining conditions
O A .. AD_ A A...AD,
* Join with a disjunctive condition
r > 61v62v...v6n5
— Either use nested loops/block nested loops, or
— Compute each join separately
* then union of records in individual joins r > g s:
(rl><1615)u(rl><1925)u...u(rl><lens)

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

38

Other Operations

* Duplicate elimination (DISTINCT) can be implemented via
hashing or sorting.

— On sorting duplicates will come adjacent to each other, and all but one set
of duplicates can be deleted.

— Optimization: duplicates can be deleted during run generation as well as at
intermediate merge steps in external sort-merge.

— Hashing is similar — duplicates will come into the same bucket.

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 39

Other Operations (Cont.)

e Aggregation (GROUP BY) can be implemented in a manner
similar to duplicate elimination.

— Sorting or hashing can be used to bring tuples in the same group together,
and then the aggregate functions can be applied on each group.

— Optimization: partial aggregation
e combine tuples in the same group during run generation and
intermediate merges, by computing partial aggregate values

* For count, min, max, sum: keep aggregate values on tuples found so
far in the group.

— When combining partial aggregate for count, add up the partial
aggregates

* For avg, keep sum and count, and divide sum by count at the end

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

40

Evaluation of Expressions

e So far: we have seen algorithms for individual operations

* Alternatives for evaluating an entire expression tree

— Materialization: generate results of an expression whose inputs are
relations or are already computed, materialize (store) it on disk. Repeat.

— Pipelining: pass on tuples to parent operations even as an operation is
being executed

* We study above alternatives in more detail

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

41

Materialization

* Materialized evaluation: evaluate one operation at a time,
starting at the lowest-level. Use intermediate results
materialized into temporary relations to evaluate next-level
operations.

— e.g., in figure below, compute and store

O puilding—watson- (dEPArtMENT)

— then compute and store its join with instructor, and finally compute the
projection on name.

name

X

TN

o ... instructor
building = “Watson”

department

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

42

Materialization (Cont.)

Materialized evaluation is always applicable
Cost of writing results to disk and reading them back can be high

— Our cost formulas for operations ignore cost of writing results to disk, so

e Overall cost = sum of costs of individual operations +
cost of writing intermediate results to disk

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

43

Pipelining

* Pipelined evaluation: evaluate several operations
simultaneously, passing the results of one operation to the next.

— e.g., in previous expression tree, don't store result of
O puilding-watsorr (AEPAItMENT)

— instead, pass tuples directly to the join. Similarly, don't store result of join,
pass tuples directly to projection.

* Much cheaper than materialization: no need to store a
temporary relation to disk.

* Pipelining may not always be possible — e.g., sort, hash-join.

* For pipelining, use evaluation algorithms that generate output
tuples even as tuples are received for inputs to the operation.

* Pipelines can be executed in two ways: demand driven and
producer driven

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 44

Pipelining (Cont.)

* In demand-driven evaluation
— System repeatedly requests next tuple from top level operation
— Each operation requests next tuple from children operations as required

— In between calls, operation has to maintain "state" so it knows what to
return next

name

X

N

o . instructor
building = “Watson”

department

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

Pipelining (Cont.)

* In producer driven pipelining
— Operators produce tuples eagerly and pass them up to their parents

e Buffer maintained between operators, child puts tuples in buffer,
parent removes tuples from buffer
 If buffer is full, child waits till there is space in the buffer, and then
generates more tuples
— System schedules operations that have space in output buffer and can
process more input tuples

name

/ N
o . . instructor
building = “Watson”

department

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 46

Blocking Operations

* Blocking operations: cannot generate any output until all input is
consumed
— e.g., sorting, aggregation, ...
e But can often consume inputs from a pipeline, or produce
outputs to a pipeline
* Key idea: blocking operations often have two suboperations

— e.g., for sorting: run generation and merge

* Treat them as separate operations

(a) Logical Query (b) Pipelined Plan

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem 47

Blocking Operations (Cont.)

* Pipeline stages:
— All operations in a stage run concurrently
— A stage can start only after preceding stages have completed execution

(a) Logical Query (b) Pipelined Plan

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

48

Pipelining for Continuous-Stream Data

* Data streams
— Data entering database in a continuous manner

— E.g., sensor networks, user clicks, ...

 Continuous queries
— Results get updated as streaming data enters the database
— Aggregation on windows is often used
* e.g., tumbling windows divide time into units, e.g., hours, minutes

 Need to use pipelined processing algorithms
— Punctuations used to infer when all data for a window has been received

IST, MEIC/MECD/METI Administra¢do de Dados e Sistemas de Informagao (ADSI) - 2022/2023 - 22 Sem

49

	Slide 1: Data Administration in Information Systems
	Slide 2: Query processing
	Slide 3: Basic Steps in Query Processing
	Slide 4: Basic Steps in Query Processing (Cont.)
	Slide 5: Basic Steps in Query Processing (Cont.)
	Slide 6: Basic Steps in Query Processing (Cont.)
	Slide 7: Basic Steps in Query Processing (Cont.)
	Slide 8: Measures of Query Cost
	Slide 9: Selection Operation
	Slide 10: Selections Using Indices
	Slide 11: Selections Using Indices
	Slide 12: Selections Involving Comparisons
	Slide 13: Implementation of Complex Selections
	Slide 14: Algorithms for Complex Selections
	Slide 15: Sorting
	Slide 16: Example: External Sorting Using Sort-Merge
	Slide 17: External Sort-Merge
	Slide 18: External Sort-Merge (Cont.)
	Slide 19: External Sort-Merge (Cont.)
	Slide 20: External Sort-Merge (Cont.)
	Slide 21: External Sort-Merge (Cont.)
	Slide 22: Join Operation
	Slide 23: Nested-Loop Join
	Slide 24: Nested-Loop Join (Cont.)
	Slide 25: Block Nested-Loop Join
	Slide 26: Block Nested-Loop Join (Cont.)
	Slide 27: Block Nested-Loop Join (Cont.)
	Slide 28: Indexed Nested-Loop Join
	Slide 29: Indexed Nested-Loop Join (Cont.)
	Slide 30: Merge-Join
	Slide 31: Merge-Join (Cont.)
	Slide 32: Merge-Join (Cont.)
	Slide 33: Hash-Join
	Slide 34: Hash-Join (Cont.)
	Slide 35: Hash-Join (Cont.)
	Slide 36: Hash-Join (Cont.)
	Slide 37: Hash-Join (Cont.)
	Slide 38: Complex Joins
	Slide 39: Other Operations
	Slide 40: Other Operations (Cont.)
	Slide 41: Evaluation of Expressions
	Slide 42: Materialization
	Slide 43: Materialization (Cont.)
	Slide 44: Pipelining
	Slide 45: Pipelining (Cont.)
	Slide 46: Pipelining (Cont.)
	Slide 47: Blocking Operations
	Slide 48: Blocking Operations (Cont.)
	Slide 49: Pipelining for Continuous-Stream Data

