
Data Administration in Information Systems

Indexing

Indexing

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 2

Indexing

IST, MEIC/MECD/METI

Administração de Dados e Sistemas de
Informação (ADSI) - 2022/2023 - 2º Sem

3

Basic Concepts

• Indexing mechanisms used to speed up access to desired data
– e.g., book catalog in library

• Search Key – attribute to set of attributes used to look up records
in a file.

• An index file consists of records (called index entries) of the form

• Index files are typically much smaller than the original file

• Two basic kinds of indices:
– Ordered indices: search keys are stored in sorted order

– Hash indices: search keys are distributed uniformly across "buckets" using
a "hash function"

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 4

search-key pointer

Index Evaluation Metrics

• Access types supported efficiently, for example:
– records with a specified value in the attribute

– records with an attribute value falling in a specified range of values

• Access time

• Insertion time

• Deletion time

• Space overhead

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 5

Ordered Indices

• In an ordered index, index entries are stored sorted on the
search key value

• Clustered index: in a sequentially ordered file, the index whose
search key specifies the sequential order of the file
– also called primary index

– the search key of a clustered index is usually (but not necessarily) the
primary key.

• Non-clustered index: an index whose search key specifies an
order different from the sequential order of the file
– also called secondary index

• Index-sequential file: sequential file ordered on a search key,
with a clustering index on the search key

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 6

Dense Index Files

• Dense index — Index record appears for every search-key value
in the file
– e.g. index on ID attribute of instructor relation

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 7

Dense Index Files (Cont.)

• Dense index on dept_name, with instructor file sorted on
dept_name

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 8

Sparse Index Files

• Sparse Index: contains index records for only some search-key
values
– applicable when records are sequentially ordered on search-key

• To locate a record with search-key value K we:
– find index record with largest search-key value < K

– search file sequentially starting at the record to which the index record
points

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 9

Sparse Index Files (Cont.)

• Compared to dense indices:
– less space and less maintenance overhead for insertions and deletions

– generally slower than dense index for locating records

• Good tradeoff:
– for clustered index: sparse index with an index entry for every block in file,

corresponding to least search-key value in the block

– for non-clustered index: sparse index on top of dense index (multilevel
index)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 10

Clustered vs. Non-clustered Indices

• Indices offer substantial benefits when searching for records

• But note: indices imposes overhead on database modification
– when a record is inserted or deleted, every index on the relation must be

updated

– when a record is updated, any index on an updated attribute must be
updated

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 11

Index Update: Insertion

• Perform a lookup using the search-key value of the record to be
inserted

• Dense indices – if the search-key value does not appear in the
index, insert it
– Indices are maintained as sequential files

– Need to create space for new entry, overflow blocks may be required

• Sparse indices – if index stores an entry for each block of the file,
no change needs to be made to the index unless a new block is
created
– If a new block is created, the first search-key value appearing in the new

block is inserted into the index

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 12

Index Update: Deletion

• If deleted record was the only record in the file with its particular
search-key value, the search-key is deleted from the index also

• Dense indices – deletion of search-key is similar to file record
deletion

• Sparse indices
– If an entry for the search key exists in the index, it is deleted by replacing

the entry in the index with the next search-key value in the file (in search-
key order)

– If the next search-key value already has an index entry, the entry is deleted
instead of being replaced

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 13

Non-clustered Indices Example

• Non-clustered index on salary field of instructor

• Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value

• Non-clustered indices must be dense

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 14

Clustered vs. Non-clustered Indices

• Sequential scan using clustering index is efficient

• But note: a sequential scan using a non-clustered index is
expensive on magnetic disk
– each record access may fetch a new block from disk

– each block fetch on magnetic disk requires about 5 to 10 milliseconds

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 15

Indices on Multiple Keys

• Composite search key
– e.g., index on instructor relation on attributes (dept_name, salary)

– values are sorted lexicographically

• e.g. (Comp. Sci., 65000) < (Comp. Sci., 75000) and
(Comp. Sci., 75000) < (Music, 40000)

– can query on just dept_name, or on (dept_name, salary)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 16

Multilevel Index

• If index does not fit in memory, access becomes expensive

• Solution: treat index kept on disk as a sequential file and
construct a sparse index on it
– outer index – a sparse index of the basic index

– inner index – the basic index file

• If even outer index is too large to fit in main memory, yet another
level of index can be created, and so on.

• Indices at all levels must be updated on insertion or deletion
from the file

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 17

Multilevel Index (Cont.)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 18

Example of B+-Tree

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 19

B+-Tree Indices

• A B+-tree is a rooted tree satisfying the following properties:
– All paths from root to leaf are of the same length.

– Each node that is not a root or a leaf has between Τ𝑛 2 and 𝑛 children.

– A leaf node has between Τ𝑛 − 1 2 and 𝑛 − 1 values.

– Special cases:

• If the root is not a leaf, it has at least 2 children.

• If the root is a leaf (that is, there are no other nodes in the tree), it can
have between 0 and 𝑛 − 1 values.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 20

B+-Tree Node Structure

• Typical node

– 𝐾𝑖 are the search-key values

– 𝑃𝑖 are pointers to children (for non-leaf nodes) or pointers to records or
buckets of records (for leaf nodes).

• The search-keys in a node are ordered

𝐾1 < 𝐾2 < 𝐾3 < … < 𝐾𝑛−1

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 21

Leaf Nodes in B+-Trees

• Properties of a leaf node:
– 𝑃𝑖 (𝑖 = 1, 2, … , 𝑛 − 1) points to a file record with search-key value 𝐾𝑖

– If 𝐿𝑖 and 𝐿𝑗 are leaf nodes (with 𝑖 < 𝑗) then 𝐿𝑖's search-key values are ≤

𝐿𝑗's search-key values

– 𝑃𝑛 points to next leaf node in search-key order

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 22

Non-Leaf Nodes in B+-Trees

• Non leaf nodes form a multi-level sparse index on the leaf nodes.

• For a non-leaf node with 𝑛 pointers:
– All the search-keys in the subtree to which 𝑃1 points are < 𝐾1
– For 2 ≤ 𝑖 ≤ 𝑛 − 1 all the search-keys in the subtree to which 𝑃𝑖 points

have values < 𝐾𝑖 and ≥ 𝐾𝑖−1
– All the search-keys in the subtree to which 𝑃𝑛 points have values ≥ 𝐾𝑛−1
– General structure:

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 23

Example of B+-tree

• B+-tree for instructor file (n = 6)

– Leaf nodes must have between 3 and 5 values
(Τ𝑛 − 1 2 and 𝑛 − 1, with n = 6).

– Non-leaf nodes other than root must have between 3 and 6 children
(Τ𝑛 2 and 𝑛 with n =6).

– Root must have at least 2 children.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 24

Observations about B+-trees

• Since the inter-node connections are done by pointers, "logically"
close blocks need not be "physically" close.

• The B+-tree contains a relatively small number of levels
– level below root has at least 2 × Τ𝑛 2 values

– next level has at least 2 × Τ𝑛 2 × Τ𝑛 2 values

– etc.

• If there are 𝐾 search-key values in the file, the tree height is no

more than log Τ𝑛 2 𝐾

– thus searches can be conducted efficiently.

• Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time
(as we shall see).

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 25

Queries on B+-Trees

• Start at the root node and look for value 𝑉
– If there is a 𝐾𝑖 such that 𝑉 = 𝐾𝑖 then follow 𝑃𝑖+1
– If there is a 𝐾𝑖 such that 𝑉 < 𝐾𝑖 then follow 𝑃𝑖
– If there is no such 𝐾𝑖 then follow last pointer

• Repeat the same procedure on every non-leaf node

• Once a leaf node is reached:
– If there is a 𝐾𝑖 such that 𝑉 = 𝐾𝑖 then follow 𝑃𝑖
– If there is no such 𝐾𝑖 then value 𝑉 is not found

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 26

Queries on B+-Trees (Cont.)

• Range queries find all records with search key values in a range
𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥

– Search for 𝑉𝑚𝑖𝑛 until reaching a leaf node

• note: the leaf node may or may not contain 𝑉𝑚𝑖𝑛

– Run through the leaf nodes sequentially

– Retrieve records from every pointer 𝑃𝑖 such that 𝑉𝑚𝑖𝑛 ≤ 𝐾𝑖 ≤ 𝑉𝑚𝑎𝑥

– Stop on the first 𝐾𝑖 such that 𝑉𝑚𝑎𝑥 < 𝐾𝑖 (or go until the end)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 27

Queries on B+-Trees (Cont.)

• If there are 𝐾 search-key values in the file, the height of the tree

is no more than log Τ𝑛 2 𝐾 .

• A node is generally the same size as a disk block, typically 4
kilobytes
– and n is typically around 100 (40 bytes per index entry).

• With 1 million search key values and n = 100
– at most log50(1,000,000) = 4 nodes are accessed in a lookup traversal from

root to leaf.

• Contrast this with a balanced binary tree with 1 million search
key values — around 20 nodes are accessed in a lookup
– above difference is significant since every node access may need a disk

I/O, costing around 20 milliseconds

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 28

Updates on B+-Trees: Insertion

• Assume record already added to the file
– Let 𝑃𝑟 be pointer to the record

– Let 𝐾𝑟 be the search key value of the record

• Find the leaf node in which the search-key value would appear
– If there is room in the leaf node, insert (𝑃𝑟, 𝐾𝑟) pair in the leaf node

– Otherwise, split the node (along with the new (𝑃𝑟, 𝐾𝑟) entry) as discussed
in the next slide, and propagate updates to parent nodes.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 29

Updates on B+-Trees: Insertion (Cont.)

• Splitting a leaf node:
– take the 𝑛 (search-key value, pointer) pairs (including the one being

inserted) in sorted order. Place the first Τ𝑛 2 in the original node, and the
rest in a new node.

– let the new node be 𝑝 and let 𝑘 be the least key value in 𝑝. Insert (𝑘, 𝑝) in
the parent of the node being split.

– If the parent is full, split it and propagate the split further up.

• Splitting of nodes proceeds upwards till a node that is not full is
found.
– In the worst case the root node may be split increasing the height of the

tree by 1.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 30

B+-Tree Insertion

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 31

B+-Tree before and after insertion of "Adams"

affected nodes

B+-Tree Insertion (Cont.)

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 32

B+-Tree before and after insertion of "Lamport"

affected nodes

affected nodes

Updates on B+-Trees: Deletion

• Assume record already deleted from file.
– Let 𝑃𝑟 be pointer to the record

– Let 𝐾𝑟 be the search key value of the record

• Remove (𝑃𝑟, 𝐾𝑟) from the leaf node

• If the node has too few entries due to the removal, and the
entries in the node and a sibling fit into a single node, then
merge siblings:
– Insert all the search-key values in the two nodes into a single node (the

one on the left) and delete the other node.

– Delete the pair (𝐾𝑖−1, 𝑃𝑖) where 𝑃𝑖 is the pointer to the deleted node, from
its parent, recursively using the above procedure.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 33

Updates on B+-Trees: Deletion (Cont.)

• Otherwise, if the node has too few entries due to the removal,
but the entries in the node and a sibling do not fit into a single
node, then redistribute pointers:
– Redistribute the pointers between the node and a sibling such that both

have more than the minimum number of entries.

– Update the corresponding search-key value in the parent of the node.

• The node deletions may cascade upwards till a node which has
Τ𝑛 2 or more pointers is found.

• If the root node has only one pointer after deletion, it is deleted
and the sole child becomes the root.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 34

Examples of B+-Tree Deletion

• Deleting "Srinivasan" causes merging in leaves, and redistribution in non-leaves

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 35

Before and after deleting "Srinivasan"

affected nodes

Examples of B+-Tree Deletion (Cont.)

• Deleting Singh and Wu causes redistribution in leaves, and update in non-leaf

• Search-key value in the parent changes as a result

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 36

Before and after deleting "Singh" and "Wu"

affected nodes

Examples of B+-Tree Deletion (Cont.)

• Deleting "Gold" causes merging in leaves, update and merging in non-leaves

• Root node then has only one child, and is deleted

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 37

Before and after deletion of “Gold”

Complexity of Updates

• Cost (in terms of number of I/O operations) of insertion and
deletion of a single entry proportional to height of the tree
– With 𝐾 entries and maximum fanout of 𝑛, worst case complexity of

insert/delete of an entry is O log Τ𝑛 2 𝐾

• In practice, number of I/O operations is less:
– Internal nodes tend to be in buffer

– Splits/merges are rare, most insert/delete operations only affect a leaf
node

• Average node occupancy depends on insertion order
– 2/3rds with random, 1/2 with insertion in sorted order

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 38

B+-Tree File Organization

• B+-Tree File Organization:
– Leaf nodes in a B+-tree file organization store records, instead of pointers

– Helps keep data records clustered even when there are
insertions/deletions/updates

• Leaf nodes are still required to be half full
– Since records are larger than pointers, the maximum number of records

that can be stored in a leaf node is less than the number of pointers in a
non-leaf node.

• Insertion and deletion are handled in the same way as insertion
and deletion of entries in a B+-tree index.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 39

B+-Tree File Organization (Cont.)

• Example of B+-tree File Organization

• Good space utilization important since records use more space
than pointers.

• Use more sibling nodes in redistribution during splits and merges

– e.g. redistributing 2𝑛 entries across 3 nodes gives a space utilization of at
least Τ2𝑛 3 instead of Τ𝑛 2

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 40

Static Hashing

• A bucket is a unit of storage containing one or more entries (a
bucket is typically a disk block).
– we obtain the bucket of an entry from its search-key value using a hash

function

• Hash function ℎ is a function from the set of all search-key values
𝐾 to the set of all bucket addresses 𝐵.

• Hash function is used to locate entries for access, insertion as
well as deletion.

• Entries with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially
to locate an entry.

• In a hash index, buckets store entries with pointers to records

• In a hash file-organization buckets store records

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 41

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key
(See figure in next slide.)

• There are 10 buckets.

• The binary representation of each character is assumed to be an
integer.

• The hash function returns the sum of the binary representations
of the characters modulo 10
– e.g. h(Music) = 1 h(History) = 2

h(Physics) = 3 h(Elec. Eng.) = 3

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 42

Example of Hash File Organization (Cont.)

Hash file organization of instructor file, using dept_name as key.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 43

Hash Functions

• Worst hash function maps all search-key values to the same
bucket; this makes access time proportional to the number of
search-key values in the file.

• An ideal hash function is uniform, i.e., each bucket is assigned
the same number of search-key values from the set of all possible
values.

• Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual
distribution of search-key values in the file.

• Typical hash functions perform computation on the internal
binary representation of the search-key.
– For example, for a string search-key, the binary representations of all the

characters in the string could be added and the sum modulo the number
of buckets could be returned.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 44

Handling of Bucket Overflows

• Bucket overflow can occur because of
– Insufficient buckets

– Skew in distribution of records. This can occur due to two reasons:

• multiple records have same search-key value

• chosen hash function produces non-uniform distribution of key values

• Although the probability of bucket overflow can be reduced, it
cannot be eliminated; it is handled by using overflow buckets.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 45

Handling of Bucket Overflows (Cont.)

• Overflow chaining – the overflow buckets of a given bucket are
chained together in a linked list.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 46

Example of Hash Index

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 47

hash index on instructor, on attribute ID

Deficiencies of Static Hashing

• In static hashing, function ℎ maps search-key values to a fixed set
of 𝐵 of bucket addresses. Databases grow or shrink with time.
– If initial number of buckets is too small, and file grows, performance will

degrade due to too much overflows.

– If space is allocated for anticipated growth, a significant amount of space
will be wasted initially (and buckets will be underfull).

– If database shrinks, again space will be wasted.

• One solution: periodic re-organization of the file with a new hash
function
– Expensive, disrupts normal operations

• Better solution: allow the number of buckets to be modified
dynamically.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 48

Dynamic Hashing

• Extendable hashing – one form of dynamic hashing
– Hash function generates values over a large range — typically b-bit

integers, with b = 32.

– At any time use only a prefix of the hash function to index into a table of
bucket addresses.

– Let the length of the prefix be i bits, 0  i  32.

• Bucket address table size = 2i. Initially i = 0

• Value of i grows and shrinks as the size of the database grows and
shrinks.

– Multiple entries in the bucket address table may point to a bucket

– Thus, actual number of buckets is < 2i

• The number of buckets also changes dynamically due to coalescing
and splitting of buckets.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 49

Use of Extendable Hash Structure: Example

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 50

Example (Cont.)

• Initial hash structure, no records yet; using 0-bit prefix

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 51

Example (Cont.)

▪ Hash structure after insertion of 3 records; using 1-bit prefix

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 52

Example (Cont.)

▪ Hash structure after insertion of 4 records; using 2-bit prefix

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 53

Example (Cont.)

▪ Hash structure after insertion of 6 records; using 3-bit prefix

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 54

Example (Cont.)

▪ Hash structure after insertion of 7 records; using 3-bit prefix

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 55

Example (Cont.)

▪ Hash structure after insertion of 11 records; using 3-bit prefix

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 56

Example (Cont.)

▪ Hash structure after insertion of 12 records; using 3-bit prefix

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 57

General Extendable Hash Structure

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 58

i
i1

i2

i3

bucket 1

bucket 2

bucket 3

00..

01..

10..

11..

bucket address table

hash prefix

…

…

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next slide for details)

Use of Extendable Hash Structure

• Each bucket j stores a value ij
– All the entries that point to the same bucket have the same values on the

first ij bits.

• To locate the bucket containing search-key Kj:
1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket address
table, and follow the pointer to appropriate bucket

• To insert a record with search-key value Kj

– follow same procedure as look-up and locate the bucket, say j.

– If there is room in the bucket j insert record in the bucket.

– Else the bucket must be split and insertion re-attempted

• Overflow buckets used instead in some cases

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 59

Insertion in Extendable Hash Structure

To split a bucket j when inserting record with search-key value Kj:

• If i > ij (more than one pointer to bucket j)
– allocate a new bucket z, and set ij = iz = (ij + 1)

– Update the second half of the bucket address table entries originally
pointing to j, to point to z

– remove each record in bucket j and reinsert (in j or z)

– recompute new bucket for Kj and insert record in the bucket (further
splitting is required if the bucket is still full)

• If i = ij (only one pointer to bucket j)
– If i reaches some limit b, or too many splits have happened in this

insertion, create an overflow bucket

– Else

• increment i and double the size of the bucket address table.

• replace each entry in the table by two entries that point to the same
bucket.

• recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 60

Deletion in Extendable Hash Structure

• To delete a key value
– Locate it in its bucket and remove it.

– The bucket itself can be removed if it becomes empty (with appropriate
updates to the bucket address table).

– Coalescing of buckets can be done (can coalesce only with a "buddy"
bucket having same value of ij and same ij –1 prefix, if it is present)

– Decreasing bucket address table size is also possible

• Note: decreasing bucket address table size is an expensive operation
and should be done only if number of buckets becomes much smaller
than the size of the table

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 61

Comparison of Ordered Indexing and Hashing

• Expected type of queries:
– Hashing is generally better at retrieving records having a specified value of

the key.

– If range queries are common, ordered indices are preferred

• In practice:
– PostgreSQL supports hash indices, but discourages its use

– Oracle supports static hash organization, but not hash indices

– SQLServer supports B+-trees; hash indexes in memory only

– Hash-indices are extensively used in-memory but not used much on disk

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 62

Multiple-Key Access

• Use multiple indices for certain types of queries.

• Example:
select ID

from instructor

where dept_name = "Finance" and salary = 80000

• Possible strategies for processing query using indices on single
attributes:
1. Use index on dept_name to find instructors with department name

Finance; test salary = 80000

2. Use index on salary to find instructors with a salary of 80000; test
dept_name = "Finance".

3. Use dept_name index to find pointers to all records pertaining to the
"Finance" department. Similarly use index on salary. Take intersection of
both sets of pointers obtained.

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 63

Indices on Multiple Keys

• Composite search keys are search keys containing more than one
attribute
– e.g., (dept_name, salary)

• Lexicographic ordering: (a1, a2) < (b1, b2) if either
– a1 < b1, or

– a1=b1 and a2 < b2

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 64

Indices on Multiple Attributes

• Suppose we have an index on combined search-key
(dept_name, salary).

• With the where clause
where dept_name = "Finance" and salary = 80000

the index on (dept_name, salary) can be used to fetch only
records that satisfy both conditions.
– Using separate indices in less efficient — we may fetch many records (or

pointers) that satisfy only one of the conditions.

• Can also efficiently handle
where dept_name = "Finance" and salary < 80000

• But cannot efficiently handle
where dept_name < "Finance" and salary = 80000

– May fetch many records that satisfy the first but not the second condition

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 65

Covering Indices

• Covering index
– Include extra attributes in the index so some queries can avoid fetching

the actual records

• e.g. include salary in index on dept_name

– Store extra attributes only at leaf

• keep size of search key, fanout of non-leaf nodes, height of the index

• Particularly useful for non-clustered indices
– Since all desired information is included in the index, avoids random

access to the table

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 66

Bitmap Indices

• Bitmap indices are a special type of index designed for efficient
querying on multiple keys

• Records in a relation are assumed to be numbered sequentially
from, say, 0
– Given a number n it must be easy to retrieve record n

• Particularly easy if records are of fixed size

• Applicable on attributes that take on a relatively small number of
distinct values
– e.g., gender, country, state, …

– e.g., income-level (income broken up into a small number of levels such as
0-9999, 10000-19999, 20000-50000, 50000- infinity)

• A bitmap is simply an array of bits

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 67

Bitmap Indices (Cont.)

• In its simplest form a bitmap index on an attribute has a bitmap
for each value of the attribute
– Bitmap has as many bits as records

– In a bitmap for value 𝑣, the bit for a record is 1 if the record has the value
𝑣 for the attribute, and is 0 otherwise

• Example

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 68

Bitmap Indices (Cont.)

• Bitmap indices are useful for queries on multiple attributes
– not particularly useful for single attribute queries

• Queries are answered using bitmap operations
– Intersection (and)

– Union (or)

• Each operation takes two bitmaps of the same size and applies
the operation on corresponding bits to get the result bitmap
– e.g., 100110 AND 110011 = 100010

100110 OR 110011 = 110111
NOT 100110 = 011001

– gender m with income level L1: 10010 AND 10100 = 10000

• Can then retrieve required tuples.

• Counting number of matching tuples is even faster

IST, MEIC/MECD/METI Administração de Dados e Sistemas de Informação (ADSI) - 2022/2023 - 2º Sem 69

	Slide 1: Data Administration in Information Systems
	Slide 2: Indexing
	Slide 3: Indexing
	Slide 4: Basic Concepts
	Slide 5: Index Evaluation Metrics
	Slide 6: Ordered Indices
	Slide 7: Dense Index Files
	Slide 8: Dense Index Files (Cont.)
	Slide 9: Sparse Index Files
	Slide 10: Sparse Index Files (Cont.)
	Slide 11: Clustered vs. Non-clustered Indices
	Slide 12: Index Update: Insertion
	Slide 13: Index Update: Deletion
	Slide 14: Non-clustered Indices Example
	Slide 15: Clustered vs. Non-clustered Indices
	Slide 16: Indices on Multiple Keys
	Slide 17: Multilevel Index
	Slide 18: Multilevel Index (Cont.)
	Slide 19: Example of B+-Tree
	Slide 20: B+-Tree Indices
	Slide 21: B+-Tree Node Structure
	Slide 22: Leaf Nodes in B+-Trees
	Slide 23: Non-Leaf Nodes in B+-Trees
	Slide 24: Example of B+-tree
	Slide 25: Observations about B+-trees
	Slide 26: Queries on B+-Trees
	Slide 27: Queries on B+-Trees (Cont.)
	Slide 28: Queries on B+-Trees (Cont.)
	Slide 29: Updates on B+-Trees: Insertion
	Slide 30: Updates on B+-Trees: Insertion (Cont.)
	Slide 31: B+-Tree Insertion
	Slide 32: B+-Tree Insertion (Cont.)
	Slide 33: Updates on B+-Trees: Deletion
	Slide 34: Updates on B+-Trees: Deletion (Cont.)
	Slide 35: Examples of B+-Tree Deletion
	Slide 36: Examples of B+-Tree Deletion (Cont.)
	Slide 37: Examples of B+-Tree Deletion (Cont.)
	Slide 38: Complexity of Updates
	Slide 39: B+-Tree File Organization
	Slide 40: B+-Tree File Organization (Cont.)
	Slide 41: Static Hashing
	Slide 42: Example of Hash File Organization
	Slide 43: Example of Hash File Organization (Cont.)
	Slide 44: Hash Functions
	Slide 45: Handling of Bucket Overflows
	Slide 46: Handling of Bucket Overflows (Cont.)
	Slide 47: Example of Hash Index
	Slide 48: Deficiencies of Static Hashing
	Slide 49: Dynamic Hashing
	Slide 50: Use of Extendable Hash Structure: Example
	Slide 51: Example (Cont.)
	Slide 52: Example (Cont.)
	Slide 53: Example (Cont.)
	Slide 54: Example (Cont.)
	Slide 55: Example (Cont.)
	Slide 56: Example (Cont.)
	Slide 57: Example (Cont.)
	Slide 58: General Extendable Hash Structure
	Slide 59: Use of Extendable Hash Structure
	Slide 60: Insertion in Extendable Hash Structure
	Slide 61: Deletion in Extendable Hash Structure
	Slide 62: Comparison of Ordered Indexing and Hashing
	Slide 63: Multiple-Key Access
	Slide 64: Indices on Multiple Keys
	Slide 65: Indices on Multiple Attributes
	Slide 66: Covering Indices
	Slide 67: Bitmap Indices
	Slide 68: Bitmap Indices (Cont.)
	Slide 69: Bitmap Indices (Cont.)

