Data Administration in Information Systems



Indexing

SEVENTH EDITION . Contents

Database System Concepts PARTFIVE B STORAGE MANAGEMENT AND
INDEXING

s f Chapter 12 Physical Storage Systems

12.1 Overview of Physical Storage Media 359 12.6 Disk-Block Access 577
12.2 Storage Interfaces 562 12.7 Summary 580
12.3 Magnetic Disks 563 Exercises 582
12.4 Flash Memory 567 Further Reading 584
125 RAID 570

Chapter 13 Data Storage Structures

13.1 Database Storage Architecture 587 13.7 Storage Organization in Main-Memory
13.2 File Organization 588 Databases 615

13.3 Organization of Records in Files 595 13.8 Summary 617

13.4 Data-Dictionary Storage 602 Exercises 619

13.5 Database Buffer 604 Further Reading 621

13.6 Column-Oriented Storage 611

Chapter 14  Indexing

14.1 Basic Concepts 623 14.8 Write-Optimized Index Structures 6635
14.2 Ordered Indices 625 14.9 Bitmap Indices 670
14.3 B*Tree Index Files 634 14.10 Indexing of Spatial and Temporal Data 672
144 B*-Tree Extensions 650 14.11 Summary 677
14.5 Hash Indices 638 Exercises 679
14.6 Multiple-Key Access 661 Further Reading 683
= . S 14.7 Creation of Indices 664
- Abraham Silberschatz.. | = = | S
— Henry F.Korth
PART SIX H QUERY PROCESSING AND
OPTIMIZATION
Chapter 15 Query Processing
15.1 Overview 689 15.7 Evaluation of Expressions 724
15.2 Measures of Query Cost 692 15.8 Query Processing in Memory 731
15.3 Selection Operation 695 15.9 Summary 734
15.4 Sorting 701 Exercises 736
15.5 Join Operation 704 Further Reading 740

15.6 Other Operations 719

]
Education

IST, MEIC/MECD/METI Administragdo de Dados e Sistemas de Informag&o (ADSI) - 2022/2023 - 22 Sem



Indexin

SEVENTH EDITION

Database System Concepts

Contents

Chapter 1  Introduction

L1 Database-System Applications | 1.7 Database and Application Architect
1.2 Purpose of Database Systems 5 1.8 Database Users and Administrators
1.3 View of Data & 1.9 History of Database Systems 25
1.4 Database Languages 13 L10 Summary 29

Abraham Silberschatz
Henry F. Korth
S.Sudarshan

Mc
Graw

Hill
Education

L5 Database Design 17
1.6 Database Engine 18

Chapter 2 Introduction to the Relational Model

2.1 Structure of Relational Databases 37
2.2 Database Schema 41

2.3 Keys 43

2.4 Schema Diagrams 46

2.5 Relational Query Languages 47

Chapter 3 Introduction to SQL

3.1 Overview of the SQL Query Language 65
3.2 SQL Data Definition 66

3.3 Basic Structure of SQL Queries 71

34 Additional Basic Operations 79

3.5 Set Operations 85

3.6 Null Values 89

RTONE H RELATIONAL LANGUAGES

Modification of the Database

Index

aborted transactions, 805-807,
819-820
abstraction, 2, 9-12, 15
acceptors, 1148, 1152
accessing data. See also security
from application programs,
16-17
concurrent-access anomalies,
7

difficulties in, 6
indices for, 19
recovery systems and,
910-912
types of access, 15
access paths, 695
access time
indices and, 624, 627-628
query processing and, 692
storage and, S61, 566, 567,
578
access types, 624
account nonces, 1271
ACID properties. See ato
consistency: durability:

Advanced Encryption Standard
(AES), 448, 449
advanced SQL. 183-231
accessing from programming
languages, 183-198
aggregate features, 219-231
embedded, 197-198
functions and procedures,
198-206
JDBC and, 184-193
ODBC and, 194-197
Python and, 193-194
triggers and, 206-213
advertisement data, 469
AES (Advanced Encryption
Standard), 448, 449
after triggers, 210
aggregate functions, 91-96
basic, 91-92
with Boolean values, 96
defined, 91
with grouping, 92-95
having clause, 95-96
with null values, 96

isolation regation

Active Server Page (ASP), 405 defined, 277
active 806 tity- (ER)
ActiveX DataObjects (ADO), model and, 276-277

1239 intraoperation parallelism
adaptive lock granularity, and, 1049

969-970 on multidimensional data,
add constraint, 146 527-532
ADO (ActiveX DataObjects), partial, 1049

1239
ADONET, 184, 1239

pivoting and, 226-227, 530
query optimization and, 764

query processing and, 723
ranking and, 219-223
representation of, 279
rollup and cube, 227-231
skew and, 1049-1050
of transactions, 1278
view maintenance and,
781-782
windowing and,
aggregation operation,
aggregation switch, 977
airlines, database applications
for, 3
Ajax, 423-426, 1015
algebraic operations. See
relational algebra
aliases, 81, 336, 1242
all construct, 100
alter table, 71, 146
alter trigger, 210
alter type, 159
Amdahl’s law, 974
American National Standards
Institute (ANSI), 65, 1237
analysis pass, 944
analytics. See data analytics
and connective, 74
and operation, $9-90
anonymity, 1252, 1253, 1258,

26

1259

ANSI (American National
Standards Institute), 65,
1237

anticlpatory standards, 1237

anti-join operation, 108, 776

1299

IST, MEIC/MECD/METI




Basic Concepts

— e.g., book catalog in library

* Search Key — attribute to set of attributes used to look up records

in a file.

* An index file consists of records (called index entries) of the form

Indexing mechanisms used to speed up access to desired data

search-key

pointer

* Index files are typically much smaller than the original file

e Two basic kinds of indices:

— Ordered indices: search keys are stored in sorted order
— Hash indices: search keys are distributed uniformly across "buckets" using

a "hash function"

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem




Index Evaluation Metrics

Access types supported efficiently, for example:
— records with a specified value in the attribute
— records with an attribute value falling in a specified range of values

e Access time

e |nsertion time 10101 |Srinivasan | Comp. Sci. | 65000
. . 12121 |Wu Finance 90000

* Deletion time 15151 |Mozart | Music 40000
e § pace over head 22222 |Einstein Physics 95000
32343 | El Said History 60000

33456 |Gold Physics 87000

45565 |Katz Comp. Sci. | 75000

58583 |Califieri History 62000

76543 |Singh Finance 80000

76766 | Crick Biology 72000

83821 |Brandt Comp. Sci. | 92000

98345 |Kim Elec. Eng. | 80000

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

J AVAVAVAVAVAVAVAVAVAVAN



Ordered Indices

* |n an ordered index, index entries are stored sorted on the
search key value

* Clustered index: in a sequentially ordered file, the index whose
search key specifies the sequential order of the file

— also called primary index

— the search key of a clustered index is usually (but not necessarily) the
primary key.

* Non-clustered index: an index whose search key specifies an
order different from the sequential order of the file

— also called secondary index

* Index-sequential file: sequential file ordered on a search key,
with a clustering index on the search key

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Dense Index Files

* Dense index — Index record appears for every search-key value
in the file

— e.g.index on ID attribute of instructor relation

IST, MEIC/MECD/METI

10101

12121

15151

22222

32343

33456

45565

58583

76543

76766

83821

98345

- 10101 |Srinivasan | Comp. Sci. | 65000
- 12121 |Wu Finance 90000
~ 15151 |Mozart Music 40000
~ 22222 | Einstein Physics 95000
- 32343 |El Said History 60000
~| 33456 |Gold Physics 87000
~ 45565 |Katz Comp. Sci. | 75000
~| 58583 |Califieri History 62000
~| 76543 |Singh Finance 80000
- 76766 |Crick Biology 72000
~ 83821 |Brandt Comp. Sci. | 92000
~ 98345 |Kim Elec. Eng. | 80000

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

JVVVVVVVVVVV



Dense Index Files (Cont.)

 Dense index on dept_name, with instructor file sorted on

dept _name

Biology

Comp. Sci.

Elec. Eng.

Finance

History

Music

Physics

IST, MEIC/MECD/METI

7/ ]

p

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

76766 | Crick Biology 72000
10101 | Srinivasan| Comp. Sci. 65000
45565 | Katz Comp. Sci. | 75000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000
12121 | Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri | History 62000
15151 | Mozart Music 40000
22222 | Einstein | Physics 95000
33465 | Gold Physics 87000

JNRRRRRRRRAR]



Sparse Index Files

e Sparse Index: contains index records for only some search-key
values
— applicable when records are sequentially ordered on search-key

* To locate a record with search-key value K we:

— find index record with largest search-key value < K

— search file sequentially starting at the record to which the index record

points

10101 ~ 10101 |Srinivasan| Comp. Sci.| 65000 —

32343 12121 |Wu Finance | 90000

76766 15151 |Mozart | Music 40000 .
22222 |Einstein | Physics 95000 L
32343 |El Said History 60000 e
33456 |Gold Physics 87000 .
45565 |Katz Comp. Sci.| 75000 L
58583 |Califieri | History 62000 .
76543 |Singh Finance 80000 .
76766 |Crick Biology 72000 L~
83821 |Brandt Comp. Sci.| 92000 .
98345 |Kim Elec. Eng. | 80000 .

L

IST, MEIC/MECD/METI

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Sparse Index Files (Cont.)

e Compared to dense indices:
— less space and less maintenance overhead for insertions and deletions
— generally slower than dense index for locating records

e Good tradeoff:

— for clustered index: sparse index with an index entry for every block in file,
corresponding to least search-key value in the block

Y

data
\| block 0

data
block 1

— for non-clustered index: sparse index on top of dense index (multilevel
index)

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

10



Clustered vs. Non-clustered Indices

* Indices offer substantial benefits when searching for records

* But note: indices imposes overhead on database modification

— when arecord is inserted or deleted, every index on the relation must be
updated

— when arecord is updated, any index on an updated attribute must be
updated

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

11



Index Update: Insertion

* Perform a lookup using the search-key value of the record to be
inserted

* Dense indices — if the search-key value does not appear in the
index, insert it
— Indices are maintained as sequential files
— Need to create space for new entry, overflow blocks may be required

e Sparse indices — if index stores an entry for each block of the file,
no change needs to be made to the index unless a new block is

created

— If a new block is created, the first search-key value appearing in the new
block is inserted into the index

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 12



Index Update: Deletion

* If deleted record was the only record in the file with its particular
search-key value, the search-key is deleted from the index also

* Dense indices — deletion of search-key is similar to file record
deletion

* Sparse indices

— If an entry for the search key exists in the index, it is deleted by replacing
the entry in the index with the next search-key value in the file (in search-
key order)

— |If the next search-key value already has an index entry, the entry is deleted
instead of being replaced

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 13



Non-clustered Indices Example

* Non-clustered index on salary field of instructor

40000 . 10101 | Srinivasan | Comp. Sci. | 65000 —P
60000 | - / 12121 |Wu Finance 90000 -
62000 | L ‘ 15151 |Mozart | Music 40000 —
65000 | 1 B 22222 |Einstein | Physics 95000 | L«
72000 | B ' 32343 |ElSaid  |History | 60000 | _l<
= L/ 4| 33456 |Gold | Physics | 87000 _g
87000 \\ /S /N~ 45565 | Katz Comp. Sci. | 75000 —
90000 | 1 ) O‘\ 56583 | Califieri | Flistory | 62000 | =
92000 B 76543 | Singh Finance 80000 -
95000 . 76766 | Crick Biology 72000 _7
‘ 83821 |Brandt Comp. Sci. | 92000 _
. 98345 | Kim Elec. Eng. 80000 _ZJ_
. L

* Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value

e Non-clustered indices must be dense

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Clustered vs. Non-clustered Indices

Sequential scan using clustering index is efficient

But note: a sequential scan using a non-clustered index is
expensive on magnetic disk

— each record access may fetch a new block from disk

— each block fetch on magnetic disk requires about 5 to 10 milliseconds

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

15



Indices on Multiple Keys

 Composite search key
— e.g., index on instructor relation on attributes (dept _name, salary)

— values are sorted lexicographically

e e.g. (Comp. Sci., 65000) < (Comp. Sci., 75000) and
(Comp. Sci., 75000) < (Music, 40000)

— can query on just dept_name, or on (dept_name, salary)

IST, MEIC/MECD/METI

10101 |Srinivasan | Comp. Sci. | 65000 -
12121 |Wu Finance 90000 -
15151 |Mozart Music 40000 .
22222 | Einstein Physics 95000 -
32343 |El Said History 60000 -
33456 |Gold Physics 87000 =
45565 |Katz Comp. Sci. | 75000

58583 |Califieri History 62000 ~
76543 |Singh Finance 80000 -
76766 |Crick Biology 72000 —
83821 |Brandt Comp. Sci. | 92000 =
98345 |Kim Elec. Eng. | 80000 B

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 -

vavavvvvvv

22 Sem 16



Multilevel Index

* If index does not fit in memory, access becomes expensive

* Solution: treat index kept on disk as a sequential file and
construct a sparse index on it
— outer index — a sparse index of the basic index
— inner index — the basic index file
* If even outer index is too large to fit in main memory, yet another
level of index can be created, and so on.

* Indices at all levels must be updated on insertion or deletion
from the file

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 17



Multilevel Index (Cont.)

index

=

block O

L2

index
block 1

-
*
-

outer index inner index

data
block O

data
block 1

-

IST, MEIC/MECD/METI

Administragdo de Dados e Sistemas de Informag&o (ADSI) - 2022/2023 - 22 Sem

18



Example of B*-Tree

I I Mozartl | | I I |“( """"""""""""""""""""" Root node

|||Ein5tem| | Gold | I Srmlvasanl | | | I | i'—'-- Internal nodes
\ \ Leaf nodes-,
Y v
Brandtl |Caliﬁcri| |Crick| -|->| IEmst(.m| |El Sa1c1| I old | | Katz | | K1m|-|->-| |Mozartl | Singh I | |-|->-I_|§nivasan|l|Wu I | | | ‘

»| 10101 Srinivasan | Comp. Sci. 65000

»| 12121 Wu Finance 90000

> 15151 Mozart Music 40000

»| 22222 | Einstein Physics 95000

> 32343 El Said History 80000

» 33456 | Gold Physics 87000

»| 45565 Katz Comp. Sci. 75000

> 58583 Califieri History 60000

»| 76543 Singh Finance 80000

> 76766 Crick Biology 72000

> 83821 | Brandt Comp. Sci. | 92000

»| 98345 Kim Elec. Eng. 80000

IST, MEIC/MECD/METI Administragdo de Dados e Sistemas de Informag&o (ADSI) - 2022/2023 - 22 Sem



B*-Tree Indices

A B*-treeis a rooted tree satisfying the following properties:
— All paths from root to leaf are of the same length.
— Each node that is not a root or a leaf has between [n/2] and n children.
— Aleaf node has between [(n — 1) /2] and (n — 1) values.
— Special cases:
* |f the root is not a leaf, it has at least 2 children.

* Iftheroot is a leaf (that is, there are no other nodes in the tree), it can
have between 0 and (n — 1) values.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 20



B*-Tree Node Structure

* Typical node

Pq Ky Py e P, 1 K1 P,

— K; are the search-key values

— P; are pointers to children (for non-leaf nodes) or pointers to records or
buckets of records (for leaf nodes).

 The search-keys in a node are ordered
Ki<K,<K;<..<K,_4

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Leaf Nodes in B*-Trees

* Properties of a leaf node:
— P;(i=1,2,..,n— 1) points to a file record with search-key value K;

— If L; and L; are leaf nodes (with i < j) then L;'s search-key values are <
L;'s search-key values

— P, points to next leaf node in search-key order

leaf node

| Brandt Califieri Crick | » Pointer to next leaf node

10101  Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 FEinstein  Physics 95000
32343  El Said History 80000

33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
» 58583 Califieri  History 60000
76543  Singh Finance 80000
> 76766 Crick Biology 72000

> 83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Non-Leaf Nodes in B*-Trees

* Non leaf nodes form a multi-level sparse index on the leaf nodes.

* For a non-leaf node with n pointers:
— All the search-keys in the subtree to which P; points are < K;

— For 2 < i <n—1allthe search-keys in the subtree to which P; points
have values < K; and = K;_4

— All the search-keys in the subtree to which P, points have values = K,,_4
— General structure:

P, Ky P, ... P,y K,q P,

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 23



Example of B*-tree

e B*-tree for instructor file (n = 6)

| El 5aid |

Mozart

Brandt| | Califieri

Crick

Einstein

Katz

Kim

Mozart

Singh

Srinivasan

— Leaf nodes must have between 3 and 5 values
([(n —1)/2] and n — 1, with n = 6).

— Non-leaf nodes other than root must have between 3 and 6 children
([n/2] and n with n =6).
— Root must have at least 2 children.

IST, MEIC/MECD/METI

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

24



Observations about B*-trees

e Since the inter-node connections are done by pointers, "logically"
close blocks need not be "physically" close.

 The B*-tree contains a relatively small number of levels
— level below root has at least 2 X [n/2] values
— next level has at least 2 X [n/2] X [n/2] values
— etc.
* If there are K search-key values in the file, the tree height is no
more than [log[n/z] (K)]
— thus searches can be conducted efficiently.
* Insertions and deletions to the main file can be handled

efficiently, as the index can be restructured in logarithmic time
(as we shall see).

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 25



Queries on B*-Trees

* Start at the root node and look for value IV
— If thereis a K; such that V = K; then follow P; 4
— If thereis a K; such that IV < K; then follow P;
— If there is no such K; then follow last pointer

 Repeat the same procedure on every non-leaf node

* Once aleaf node is reached:
— If thereis a K such that V = K; then follow P;
— If there is no such K; then value I/ is not found

Mozart

I-AAdams Brandt

A P
Califieri Einstein Gold Srinivasan
Vg A A A
|> Califieri Crick > Einstein FEl Said > Gold Katz Kim » Mozart Singh

IST, MEIC/MECD/METI

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

)
» Srinivasan Wu

26



Queries on B*-Trees (Cont.)

* Range queries find all records with search key values in a range
[Vmin: Vmax]
— Search for V,,,;;, until reaching a leaf node
* note: the leaf node may or may not contain V,,,;,
— Run through the leaf nodes sequentially
— Retrieve records from every pointer P; such that V,,;,, < K; < V00
— Stop on the first K; such that V,,,,, < K; (or go until the end)

Mozart

A P
Califieri Einstein Gold Srinivasan
» A A A x
Adams Brandt |> Califieri Crick > Einstein El Said > Gold Katz Kim » Mozart Singh > Srinivasan Wu

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 27



Queries on B*-Trees (Cont.)

* If there are K search-key values in the file, the height of the tree
is no more than [log[n/z] (K)].

A nodeis generally the same size as a disk block, typically 4
kilobytes
— and nis typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

— at most /og:,(1,000,000) = 4 nodes are accessed in a lookup traversal from
root to leaf.

e Contrast this with a balanced binary tree with 1 million search
key values — around 20 nodes are accessed in a lookup

— above difference is significant since every node access may need a disk
/O, costing around 20 milliseconds

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

28



Updates on B*-Trees: Insertion

 Assume record already added to the file

— Let P. be pointer to the record
— Let K, be the search key value of the record

Find the leaf node in which the search-key value would appear

— If there is room in the leaf node, insert (B., K,-) pair in the leaf node

— Otherwise, split the node (along with the new (B, K,-) entry) as discussed
in the next slide, and propagate updates to parent nodes.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

29



Updates on B*-Trees: Insertion (Cont.)

e Splitting a leaf node:

— take the n (search-key value, pointer) pairs (including the one being

inserted) in sorted order. Place the first [n/2] in the original node, and the
rest in a new node.

— let the new node be p and let k be the least key value in p. Insert (k, p) in
the parent of the node being split.

— |If the parent is full, split it and propagate the split further up.

Splitting of nodes proceeds upwards till a node that is not full is
found.

— In the worst case the root node may be split increasing the height of the
tree by 1.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

30



B*-Tree Insertion

| | Mozart| | || | TR SRR Root node
[[Einstein] [ Gotd [[ ] [ Jorinivasan[ [ ] ] Internal nodes

Leaf nodes-»

\ T
Brandtll|Caliﬁeri|I|Crick|-|->—|'lEinsteinlllEl Saidl | H-»lll Gold ||| Katz ||| Kiml-l-»l I|Mozart||| Singh | | |-|->-|T|§inivasan|ll Wu | | | | ;*—-'--
| |Mozart| | | |
affected nodes / \
[[Califieri [Einstein] [Gold]] Torinivasa] ]| 11
Adamsl |Brandt| | H->| |Caliﬁeri| |Cric1<| | H->-| |Fmste111| |Fl Sa1d| | H-»leoldl |I<atz| |Kim| k|1\/[0zart| |Singh| | H-» |Srinivasau| |Wu| | | |

B*-Tree before and after insertion of "Adams"

IST, MEIC/MECD/METI Administragdo de Dados e Sistemas de Informag&o (ADSI) - 2022/2023 - 22 Sem 31



B*-Tree Insertion (Cont.)

[ [Mozart] I 1

HEZahﬁen |Emstem| |G0]d| | Snmvasanl | | | | |
Adamsl |Brandt| | H->| |Ca11ﬁer1| |Cr1c1<| | H->-| |Fmste111| |Fl Sa1d| | |G01d| |I<atz| |Kim| k|1\/[0zart| |Singh| | H-» |Srinivasau| |Wu| | | |

B*-Tree before and after insertion of "Lamport"

affected nodes

| Gold | |M02art| |

Z

. Califieri LlEinstein |.| | | I I Kim | | | | Srinivasan | | | | | |

Adams | [Brandt | | |-|*|)Caliﬁcri| |Crick| | [ | Einstein| [E1said| | -] [Gotd | [Katz || [ [Kim | [Lamport || [»{ [Mozart | [singn| | |

sinivasan [ [We] [ T1

affected nodes

IST, MEIC/MECD/METI Administragdo de Dados e Sistemas de Informag&o (ADSI) - 2022/2023 - 22 Sem

32



Updates on B*-Trees: Deletion

 Assume record already deleted from file.

— Let P. be pointer to the record
— Let K, be the search key value of the record

* Remove (P, K,) from the leaf node

* |fthe node has too few entries due to the removal, and the
entries in the node and a sibling fit into a single node, then
merge siblings:

— Insert all the search-key values in the two nodes into a single node (the
one on the left) and delete the other node.

— Delete the pair (K;_1, P;) where P; is the pointer to the deleted node, from
its parent, recursively using the above procedure.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 33



Updates on B*-Trees: Deletion (Cont.)

 Otherwise, if the node has too few entries due to the removal,
but the entries in the node and a sibling do not fit into a single
node, then redistribute pointers:

— Redistribute the pointers between the node and a sibling such that both
have more than the minimum number of entries.

— Update the corresponding search-key value in the parent of the node.

* The node deletions may cascade upwards till a node which has
[n/2] or more pointers is found.

* If the root node has only one pointer after deletion, it is deleted
and the sole child becomes the root.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

34



Examples of B*-Tree Deletion

[ [Mozard| I ]

I

I_I—Cahﬁerll IEmstelnI IGoldI |

| ISr1n1vasan| |

A

Adams I IBrandtI I

H—>| ICahﬁerlI ICrlckI I

H->| IEmstemI IEl Saldl I

- o] [ [}

[Mozart] [Singn] | 3]

ISrinivasanI IWuI I

I

Before and after deleting "Srinivasan"

Gold

Califieri 1 Einstein 1

Mozart 1

Adams| | Brandt

<|—> Califieri

Crick

Einstein

El Said

-+ | Gold

Katz

Kim

Mozart

Singh

Wu

* Deleting "Srinivasan" causes merging in leaves, and redistribution in non-leaves

IST, MEIC/MECD/METI

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

35



Examples of B*-Tree Deletion (Cont.)

L[ Goa [ [[ ]]

| Caliﬁeri|l|Einstein|l| | | :| Mozart|l| | | | |

Adams| |Brandt| | |-|->| |Caliﬁeri| |Crick| | |-|—>| |Einstein| |E1 Said| | |-|—>| |Gold| |Katz| |Kim|-|—>| |Mozart| |Singh| |Wu| |

Before and after deleting "Singh" and "Wu"
L[ Goa [| [[ ]

Califieri] [Einstein[ | ] T xm [T 11 1]

Adams | [Brandt| |

[ [catifieri] [rick[ [ [>{ [Einstein] [Ersaid[ [ ] [Gotd[ [Katz[ | [ [xim [ [Mozart] | ]

* Deleting Singh and Wu causes redistribution in leaves, and update in non-leaf
» Search-key value in the parent changes as a result

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 36



Examples of B*-Tree Deletion (Cont.)

L[ Goa || [ ]

Califieri] [Einstein[ | ] [ Kim ] ]

Adams| [Brandt| |

[H-{ [catifieri] [crick [T [ [Einstein] [Ersaid] | [>] [Gotd[ [Katz[ ] [ [xim [[Mozart] | ]

Before and after deletion of “Gold”

Califieri | [Einstein| |Katz

— [

|_|_Adams‘ |Brandt|| |-|—~| |Ca11f1er1 Crick +| |Einstein| |El Said Katz | [Kim| |Mozart

* Deleting "Gold" causes merging in leaves, update and merging in non-leaves
* Root node then has only one child, and is deleted

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 37



Complexity of Updates

e Cost (in terms of number of I/O operations) of insertion and
deletion of a single entry proportional to height of the tree

— With K entries and maximum fanout of n, worst case complexity of
insert/delete of an entry is O(log[n/z] (K))

* |n practice, number of I/O operations is less:
— Internal nodes tend to be in buffer

— Splits/merges are rare, most insert/delete operations only affect a leaf
node

* Average node occupancy depends on insertion order
— 2/3rds with random, 1/2 with insertion in sorted order

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

38



B*-Tree File Organization

B*-Tree File Organization:

— Leaf nodes in a B*-tree file organization store records, instead of pointers

— Helps keep data records clustered even when there are
insertions/deletions/updates

Leaf nodes are still required to be half full

— Since records are larger than pointers, the maximum number of records
that can be stored in a leaf node is less than the number of pointers in a
non-leaf node.

Insertion and deletion are handled in the same way as insertion

and deletion of entries in a B*-tree index.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

39



B*-Tree File Organization (Cont.)

 Example of B+-tree File Organization

| C ! F | 1 K ] M
(AA4)| (BB) 71 (C1) [(D)I) | (EA) ‘+k(F,7) G3) | (H3) ‘)J VJ
C ¥ ¥y
(I4) | U8 > (K1) | (L6) > (M4) [ (N,8) | (P,6)

* Good space utilization important since records use more space
than pointers.

* Use more sibling nodes in redistribution during splits and merges

— e.g. redistributing 2n entries across 3 nodes gives a space utilization of at
least |2n /3] instead of [n/2]

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Static Hashing

A bucket is a unit of storage containing one or more entries (a
bucket is typically a disk block).

— we obtain the bucket of an entry from its search-key value using a hash
function

e Hash function h is a function from the set of all search-key values
K to the set of all bucket addresses B.

 Hash function is used to locate entries for access, insertion as
well as deletion.

* Entries with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially
to locate an entry.

* In a hash index, buckets store entries with pointers to records
* In a hash file-organization buckets store records

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

41



Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key
(See figure in next slide.)

There are 10 buckets.

The binary representation of each character is assumed to be an
integer.

The hash function returns the sum of the binary representations
of the characters modulo 10

— e.g. h(Music)=1 h(History) = 2
h(Physics) = 3 h(Elec. Eng.) =3

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

42



Example of Hash File Organization (Cont.)

Hash file organization of instructor file, using dept _name as key.

bucket 0 bucket 4
12121 | Wu Finance (90000

76543 | Singh Finance [80000

bucket 1 bucket 5
15151| Mozart Music 40000 76766| Crick Biology [72000
bucket 2 bucket 6
32343| El Said | History 80000 10101 |Srinivasan |Comp. Sci.[65000
58583| Califieri | History 60000 45565 |Katz Comp. Sci 75000

83821 |Brandt  |Comp. Sci.[92000

bucket 3 bucket 7
22222| Einstein | Physics |95000
33456| Gold Physics |87000
98345| Kim Elec. Eng.|80000

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Hash Functions

* Worst hash function maps all search-key values to the same
bucket; this makes access time proportional to the number of
search-key values in the file.

* Anideal hash function is uniform, i.e., each bucket is assigned
the same number of search-key values from the set of all possible
values.

e |deal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual
distribution of search-key values in the file.

e Typical hash functions perform computation on the internal
binary representation of the search-key.

— For example, for a string search-key, the binary representations of all the
characters in the string could be added and the sum modulo the number
of buckets could be returned.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

44



Handling of Bucket Overflows

* Bucket overflow can occur because of
— Insufficient buckets
— Skew in distribution of records. This can occur due to two reasons:
* multiple records have same search-key value
* chosen hash function produces non-uniform distribution of key values

e Although the probability of bucket overflow can be reduced, it
cannot be eliminated; it is handled by using overflow buckets.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

45



Handling of Bucket Overflows (Cont.)

e Overflow chaining — the overflow buckets of a given bucket are
chained together in a linked list.

bucket 0

bucket 1

Y
Y

overflow buckets for bucket 1

bucket 2

bucket 3

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

46



Example of Hash Index

IST, MEIC/MECD/METI

bucket 0
76766 | —
hash index on instructor, on attribute ID

bucket 1

45565

76543

bucket 2

22222 76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. 65000
45565 | Katz Comp. Sci. 75000

?‘5?5?3 83821 | Brandt comﬁ. Sci. | 92000
98345 | Kim Elec. Eng. 80000
12121 | Wu Finance 90000

bucket 4 76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000

bucket 5 22222 | Einstein | Physics 95000

15151 33465 | Gold Physics 87000

33456

I

bucket 6

83821

bucket 7

12121 T

32343 T

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

47



Deficiencies of Static Hashing

* |n static hashing, function h maps search-key values to a fixed set
of B of bucket addresses. Databases grow or shrink with time.

— If initial number of buckets is too small, and file grows, performance will
degrade due to too much overflows.

— If space is allocated for anticipated growth, a significant amount of space
will be wasted initially (and buckets will be underfull).

— |f database shrinks, again space will be wasted.

* One solution: periodic re-organization of the file with a new hash
function

— Expensive, disrupts normal operations

e Better solution: allow the number of buckets to be modified
dynamically.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

48



Dynamic Hashing

* Extendable hashing — one form of dynamic hashing

— Hash function generates values over a large range — typically b-bit
integers, with b = 32.

— At any time use only a prefix of the hash function to index into a table of
bucket addresses.

— Let the length of the prefix be i bits, 0 </ <32.
* Bucket address table size = 2'. Initiallyi=0

* Value of i grows and shrinks as the size of the database grows and
shrinks.

— Multiple entries in the bucket address table may point to a bucket
— Thus, actual number of buckets is < 2!

* The number of buckets also changes dynamically due to coalescing
and splitting of buckets.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

49



Use of Extendable Hash Structure: Example

IST, MEIC/MECD/METI

dept_name

Biology

Comp. Sci.

Elec. Eng.
Finance
History
Music
Physics

h(dept_name)

0010 1101 1111 1011 0010 1100 0011 0000
1111 0001 0010 0100 1001 0011 0110 1101
0100 0011 1010 1100 1100 0110 1101 1111
1010 0011 1010 0000 1100 0110 1001 1111
1100 0111 1110 1101 1011 1111 0011 1010
0011 0101 1010 0110 1100 1001 1110 1011
1001 1000 0011 1111 1001 1100 0000 0001

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

50



Example (Cont.)

* Initial hash structure, no records yet; using 0-bit prefix

hash prefix
0 0
bucket address table bucket 1
dept_name h(dept_name)
Biology 00101101 1111 1011 0010 1100 0011 0000

Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0100 0011 1010 1100 1100 0110 1101 1111

Finance 1010 0011 1010 0000 1100 0110 1001 1111
History 1100 0111 1110 1101 1011 1111 0011 1010
Music 0011 0101 1010 0110 1100 1001 1110 1011
Physics 1001 1000 0011 1111 1001 1100 0000 0001

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Example (Cont.)

= Hash structure after insertion of 3 records; using 1-bit prefix

hash prefix
1

1 _— T*|15151|Mozart |Music 40000

bucket address table 1
10101 |Srinivasan/Comp. Sci.|90000
12121 (Wu Finance |90000
dept_name h(dept_name)
Biology 010 1101 1111 1011 0010 1100 0011 0000
—> Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 100 0011 1010 1100 1100 0110 1101 1111
— Finance 1010 0011 1010 0000 1100 0110 1001 1111
History 1100 0111 1110 1101 1011 1111 0011 1010
—> Music 011 0101 1010 0110 1100 1001 1110 1011
Physics 1001 1000 0011 1111 1001 1100 0000 0001

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Example (Cont.)

= Hash structure after insertion of 4 records; using 2-bit prefix

hash prefix

2
% 15151|Mozart | Music | 40000

2
12121| Wu Finance |90000
bucket address table ) ) )
22222| Einstein | Physics | 95000
2
10101|Srinivasan Comp. Sci.| 65000
dept_name h(dept_name)
Biology 01101 1111 1011 0010 1100 0011 0000
—> Comp. Sci. 1 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0 0011 1010 1100 1100 0110 1101 1111
—> Finance 00011 1010 0000 1100 01101001 1111
History 00111 11101101 1011 1111 0011 1010
—> Music 10101 1010 0110 1100 1001 1110 1011
—> Physics 11000 0011 1111 1001 1100 0000 0001

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Example (Cont.)

= Hash structure after insertion of 6 records; using 3-bit prefix

dept_name

Biology

—> Comp. Sci.

Elec. Eng.
—> Finance
—> History
—> Music
—> Physics

IST, MEIC/MECD/METI

1
h;Sh preﬁj\ 15151 | Mozart | Music 40000
\I 3
— 22222 | Einstein | Physics 95000
— 33456 | Gold Physics 87000
//\ 3
~ 12121 | Wu Finance 90000
bucket addreSSN 5
10101 | Srinivasan|Comp. Sci.| 65000
h(dept_name) 32343 | El Said History 60000

0010 1101 1111 1011 0010 1100 0011 0000
1111 0001 0010 0100 1001 0011 0110 1101
0100 0011 1010 1100 1100 0110 1101 1111
1010 0011 1010 0000 1100 0110 1001 1111
1100 0111 1110 1101 1011 1111 0011 1010
0011 0101 1010 0110 1100 1001 1110 1011
1001 1000 0011 1111 1001 1100 0000 0001

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem




Example (Cont.)

= Hash structure after insertion of 7 records; using 3-bit prefix

dept_name

Biology

—> Comp. Sci.

Elec. Eng.
—> Finance
—> History
—> Music
—> Physics

IST, MEIC/MECD/METI

hash prefix
3

'

bucket address table

h(dept_name)

0010 1101 1111 1011 0010 1100 0011 0000
1111 0001 0010 0100 1001 0011 0110 1101
0100 0011 1010 1100 1100 0110 1101 1111
1010 0011 1010 0000 1100 0110 1001 1111
1100 0111 1110 1101 1011 1111 0011 1010
0011 0101 1010 0110 1100 1001 1110 1011
1001 1000 0011 1111 1001 1100 0000 0001

1
15151 | Mozart | Music 40000
S
22222 | Einstein | Physics 95000
33456 | Gold Physics 87000
3
12121 | Wu Finance 90000
3
32343 | ElSaid | History 60000
3
10101 |Srinivasan| Comp. Sci. | 65000
45565 |Katz Comp. Sci. | 75000

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem




Example (Cont.)

= Hash structure after insertion of 11 records; using 3-bit prefix

dept_name

—> Biology

—> Comp. Sci.

Elec. Eng.
—> Finance
—> History
—> Music
—> Physics

IST, MEIC/MECD/METI

1
15151 | Mozart | Music 40000
76766 | Crick Biology 72000
hash prefix 3
3 22222 | Einstein | Physics 95000
— 33456 | Gold Physics 87000
] 3
_ 12121 | Wu Finance 90000
_,f_' 76543 | Singh Finance 80000
— 3
\\w' 32343 | El1 Said | History 60000
bucket address table cioel | clifian | ooy 62000
3
h(dept_name)
10101 |Srini i . Sci.
0010 1101 1111 1011 0010 1100 0011 0000 L e Comp Gel, ey R sseaill Bmndt || Comte, Sal DA
1111 0001 0010 0100 1001 0011 0110 1101 45565 |Katz Comp. Sci. | 75000

0100 0011 1010 1100 1100 0110 1101 1111
1010 0011 1010 0000 1100 0110 1001 1111
1100 0111 1110 1101 1011 1111 0011 1010
0011 0101 1010 0110 1100 1001 1110 1011
1001 1000 0011 1111 1001 1100 0000 0001

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem




Example (Cont.)

= Hash structure after insertion of 12 records; using 3-bit prefix

dept_name

—> Biology

—> Comp. Sci.

—> Elec. Eng.
—» Finance
—> History
—>» Music

—> Physics

IST, MEIC/MECD/METI

hash prefix
3

[

bucket address table

h(dept_name)

0010 1101 1111 1011 0010 1100 0011 0000
1111 0001 0010 0100 1001 0011 0110 1101
0100 0011 1010 1100 1100 0110 1101 1111
1010 0011 1010 0000 1100 0110 1001 1111
1100 0111 1110 1101 1011 1111 0011 1010
0011 0101 1010 0110 1100 1001 1110 1011
1001 1000 0011 1111 1001 1100 0000 0001

2

15151 | Mozart | Music 40000
76766 | Crick | Biology 72000
2

98345| Kim Elec. Eng. | 80000
3

22222| Einstein | Physics 95000
33456 | Gold Physics 87000
3

12121 | Wu Finance 90000
76543 | Singh Finance 80000
3

32343 | ElSaid | History 60000
58583 | Califieri | History 62000
3

10101 |Srinivasan| Comp. Sci. | 65000 | _|83821| Brandt | Comp. Sci. | 92000
45565 |Katz Comp. Sci. | 75000

Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem




General Extendable Hash Structure

hash prefix

1

00.. f
01..

bucket 1
10.. - )
11.. \
) bucket 2
i
bucket address table bucket 3

In this structure, i, = i; =i, whereas i, = i — 1 (see next slide for details)

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem



Use of Extendable Hash Structure

* Each bucketj stores a value j;
— All the entries that point to the same bucket have the same values on the
first i; bits.
* To locate the bucket containing search-key K::
Compute h(K;) = X
Use the first i high order bits of X as a displacement into bucket address
table, and follow the pointer to appropriate bucket

* Toinsert a record with search-key value K;
— follow same procedure as look-up and locate the bucket, say .
— If there is room in the bucket j insert record in the bucket.
— Else the bucket must be split and insertion re-attempted
* Overflow buckets used instead in some cases

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

59



Insertion in Extendable Hash Structure

To split a bucket j when inserting record with search-key value K::

* Ifi>i;(more than one pointer to bucket j)
— allocate a new bucket z, and seti; =i, = (i;+ 1)

— Update the second half of the bucket address table entries originally
pointing to j, to point to z

— remove each record in bucket j and reinsert (in j or 2)
— recompute new bucket for K; and insert record in the bucket (further
splitting is required if the bucket is still full)
* Ifi =i (only one pointer to bucket j)

— If/ reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket

— Else
* increment i and double the size of the bucket address table.

* replace each entry in the table by two entries that point to the same
bucket.

* recompute new bucket address table entry for K;
Now i > i; so use the first case above.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 60



Deletion in Extendable Hash Structure

* To delete a key value
— Locate it in its bucket and remove it.

— The bucket itself can be removed if it becomes empty (with appropriate
updates to the bucket address table).

— Coalescing of buckets can be done (can coalesce only with a "buddy"
bucket having same value of i; and same i;—1 prefix, if it is present)

— Decreasing bucket address table size is also possible

* Note: decreasing bucket address table size is an expensive operation
and should be done only if number of buckets becomes much smaller
than the size of the table

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

61



Comparison of Ordered Indexing and Hashing

* Expected type of queries:

— Hashing is generally better at retrieving records having a specified value of
the key.

— If range queries are common, ordered indices are preferred
* |n practice:
— PostgreSQL supports hash indices, but discourages its use
— Oracle supports static hash organization, but not hash indices

— SQLServer supports B*-trees; hash indexes in memory only
— Hash-indices are extensively used in-memory but not used much on disk

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 62



Multiple-Key Access

Use multiple indices for certain types of queries.

Example:
select ID
from instructor
where dept_name = "Finance" and salary = 80000

Possible strategies for processing query using indices on single
attributes:

1. Use index on dept_name to find instructors with department name
Finance; test salary = 80000

2. Use index on salary to find instructors with a salary of 80000; test
dept_name = "Finance".

3. Use dept_name index to find pointers to all records pertaining to the
"Finance" department. Similarly use index on salary. Take intersection of
both sets of pointers obtained.

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

63



Indices on Multiple Keys

 Composite search keys are search keys containing more than one
attribute

— e.g., (dept_name, salary)

* Lexicographic ordering: (a,, a,) < (b, b,) if either
— a;<by,or
— a,=b, and a, < b,

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

64



Indices on Multiple Attributes

Suppose we have an index on combined search-key
(dept_name, salary).

With the where clause
where dept_name = "Finance" and salary = 80000

the index on (dept_name, salary) can be used to fetch only

records that satisfy both conditions.

— Using separate indices in less efficient — we may fetch many records (or
pointers) that satisfy only one of the conditions.

Can also efficiently handle

where dept_name = "Finance" and salary < 80000

But cannot efficiently handle
where dept_name < "Finance" and salary = 80000

— May fetch many records that satisfy the first but not the second condition

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

65



Covering Indices

* Covering index

— Include extra attributes in the index so some queries can avoid fetching
the actual records

e e.g.include salary in index on dept_name
— Store extra attributes only at leaf
» keep size of search key, fanout of non-leaf nodes, height of the index

* Particularly useful for non-clustered indices

— Since all desired information is included in the index, avoids random
access to the table

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

66



Bitmap Indices

 Bitmap indices are a special type of index designed for efficient
querying on multiple keys

* Records in a relation are assumed to be numbered sequentially
from, say, O
— Given a number n it must be easy to retrieve record n

* Particularly easy if records are of fixed size

* Applicable on attributes that take on a relatively small number of

distinct values

— e.g., gender, country, state, ...

— e.g., income-level (income broken up into a small number of levels such as
0-9999, 10000-19999, 20000-50000, 50000- infinity)

* A bitmap is simply an array of bits

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 67



Bitmap Indices (Cont.)

* Inits simplest form a bitmap index on an attribute has a bitmap
for each value of the attribute
— Bitmap has as many bits as records

— In a bitmap for value v, the bit for a record is 1 if the record has the value
v for the attribute, and is O otherwise

 Example
Bitmaps for gender Bitmaps for
record income_level
number | ID gender  income_level m 10010
L1 10100
0 76766 ~ m L1 f 01101
1 22222 L2 L2 01000
2 12121 f L1 L3 00001
3 15151 m L4 L4 00010
4 58583  f L3
L5 00000

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem 68



Bitmap Indices (Cont.)

* Bitmap indices are useful for queries on multiple attributes
— not particularly useful for single attribute queries

 (Queries are answered using bitmap operations
— Intersection (and)
— Union (or)

* Each operation takes two bitmaps of the same size and applies
the operation on corresponding bits to get the result bitmap

— e.g., 100110 AND 110011 =100010

100110 OR 110011=110111
NOT 100110 =011001

— gender m with income level L1: 10010 AND 10100 = 10000
 Can then retrieve required tuples.
* Counting number of matching tuples is even faster

IST, MEIC/MECD/METI Administracdo de Dados e Sistemas de Informac&o (ADSI) - 2022/2023 - 22 Sem

69



	Slide 1: Data Administration in Information Systems
	Slide 2: Indexing
	Slide 3: Indexing
	Slide 4: Basic Concepts
	Slide 5: Index Evaluation Metrics
	Slide 6: Ordered Indices
	Slide 7: Dense Index Files
	Slide 8: Dense Index Files (Cont.)
	Slide 9: Sparse Index Files
	Slide 10: Sparse Index Files (Cont.)
	Slide 11: Clustered vs. Non-clustered Indices
	Slide 12: Index Update: Insertion
	Slide 13: Index Update: Deletion
	Slide 14: Non-clustered Indices Example
	Slide 15: Clustered vs. Non-clustered Indices
	Slide 16: Indices on Multiple Keys
	Slide 17: Multilevel Index
	Slide 18: Multilevel Index (Cont.)
	Slide 19: Example of B+-Tree
	Slide 20: B+-Tree Indices
	Slide 21: B+-Tree Node Structure
	Slide 22: Leaf Nodes in B+-Trees
	Slide 23: Non-Leaf Nodes in B+-Trees
	Slide 24: Example of B+-tree
	Slide 25: Observations about B+-trees
	Slide 26: Queries on B+-Trees
	Slide 27: Queries on B+-Trees (Cont.)
	Slide 28: Queries on B+-Trees (Cont.)
	Slide 29: Updates on B+-Trees: Insertion
	Slide 30: Updates on B+-Trees: Insertion (Cont.)
	Slide 31: B+-Tree Insertion
	Slide 32: B+-Tree Insertion (Cont.)
	Slide 33: Updates on B+-Trees: Deletion
	Slide 34: Updates on B+-Trees: Deletion (Cont.)
	Slide 35: Examples of B+-Tree Deletion
	Slide 36: Examples of B+-Tree Deletion (Cont.)
	Slide 37: Examples of B+-Tree Deletion (Cont.)
	Slide 38: Complexity of Updates
	Slide 39: B+-Tree File Organization
	Slide 40: B+-Tree File Organization (Cont.)
	Slide 41: Static Hashing
	Slide 42: Example of Hash File Organization
	Slide 43: Example of Hash File Organization (Cont.)
	Slide 44: Hash Functions
	Slide 45: Handling of Bucket Overflows
	Slide 46: Handling of Bucket Overflows (Cont.)
	Slide 47: Example of Hash Index
	Slide 48: Deficiencies of Static Hashing
	Slide 49: Dynamic Hashing
	Slide 50: Use of Extendable Hash Structure: Example
	Slide 51: Example (Cont.)
	Slide 52: Example (Cont.)
	Slide 53: Example (Cont.)
	Slide 54: Example (Cont.)
	Slide 55: Example (Cont.)
	Slide 56: Example (Cont.)
	Slide 57: Example (Cont.)
	Slide 58: General Extendable Hash Structure 
	Slide 59: Use of Extendable Hash Structure
	Slide 60: Insertion in Extendable Hash Structure
	Slide 61: Deletion in Extendable Hash Structure
	Slide 62: Comparison of Ordered Indexing and Hashing
	Slide 63: Multiple-Key Access
	Slide 64: Indices on Multiple Keys
	Slide 65: Indices on Multiple Attributes
	Slide 66: Covering Indices
	Slide 67: Bitmap Indices
	Slide 68: Bitmap Indices (Cont.)
	Slide 69: Bitmap Indices (Cont.)

