MEIC 2022/2023

Data Administration in Information Systems 2M semester

Lab 2: Storage and file structure

Note: This lab assumes that you are using the provided virtual machine, or have otherwise installed
SQL Server, SQL Server Management Studio, and the AdventureWorks database.

9.

Open File Explorer and locate the following folder:
C:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\MSSQL\DATA

Inside this folder, locate the files for the AdventureWorks database. There should be at least one
data file (*.mdf) and a log file (*.ldf)

e Data files contain data and objects such as tables, indexes, stored procedures, and views.

e Log files contain the information that is required to recover all transactions in the database.
Take note of the size of these files.

Open SQL Server Management Studio.

In the Connect to Server window, connect to the database engine on the local machine with
Windows authentication.

In Object Explorer, expand Databases and locate the AdventureWorks database.
Right-click the AdventureWorks database and select Properties.

In the Database Properties window, change to the Files page.

Take a moment to inspect the following details about the database files:

e There are two files for different purposes (rows data and log, respectively).

e The data file is in a filegroup called PRIMARY (more about filegroups later).

e The size of each file should match what you have previously seen.

e Each file can grow by a certain amount, up to a certain maximum size.

e The path and file names should match what you have previously seen.

Use File Explorer to create the C:\Temp folder, if it doesn’t already exist.

10. In SQL Server Management Studio, open a new query window (New Query in the toolbar).

11. Place the following code in the query window:

CREATE DATABASE ExampleDB
ON PRIMARY (
NAME = ExampleDB_Filel,
FILENAME= 'C:\Temp\ExampleDB_ Filel.mdf"',
SIZE = 30MB,
FILEGROWTH = 15%),
FILEGROUP SECONDARY_1 (
NAME = ExampleDB_File2,
FILENAME= 'C:\Temp\ExampleDB_File2.ndf',
SIZE = 20MB,
FILEGROWTH = 2048KB),
FILEGROUP SECONDARY_2 (
NAME = ExampleDB_File3,
FILENAME= 'C:\Temp\ExampleDB_File3.ndf"',
SIZE = 30MB,

IST/DEI Page 1 of 7

ADSI

FILEGROWTH = 15%)
LOG ON (
NAME = ExampleDB_Llog,
FILENAME = 'C:\Temp\ExampleDB_Log.ldf",
SIZE = 5MB,
MAXSIZE = 100MB,
FILEGROWTH = 15%);

12. Before executing the code, note the following:

e The database is called ExampleDB and it contains three data files and a log file.

e By convention, the primary (master) data file has extension .mdf, other (secondary) data files
have extension .ndf, and the log file has extension .Idf

e There are three different filegroups: PRIMARY, SECONDARY_1 and SECONDARY_2.

o The logfile has an initial size of 5MB and a maximum size of 100MB.

e The data files can have an unlimited maximum size. The data file on filegroup SECONDARY_1
has an initial size of 20MB, and the remaining files have an initial size of 30MB.

e All files can grow at a rate of 15%, except for the data file in the first secondary filegroup,
which grows by 2048KB, every time this is required.

13. Execute the CREATE DATABASE statement above.

14. In Object Explorer, right-click Databases and click Refresh. Check that the ExampleDB database
has been created.

15. Check that the corresponding files have been created in C:\Temp. Also, check that the initial file
sizes agree with the specification.

16. In Object Explorer, right-click ExampleDB and select Properties. In Files, check that the file
properties agree with the specification.

17. Open another query window and write the following code:

USE ExampleDB;

CREATE PARTITION FUNCTION ExampleDB_Rangel(INT)
AS RANGE RIGHT FOR VALUES (10);

CREATE PARTITION SCHEME ExampleDB_PartSchemel
AS PARTITION ExampleDB_Rangel TO
(SECONDARY_1, SECONDARY_2);

CREATE TABLE ExampleTable (
VALUE1 INT NOT NULL,
VALUE2 INT NOT NULL,
STR1 VARCHAR(50)
) ON ExampleDB_PartSchemel(VALUE1);

18. Before executing the code, note the following:
e We are creating a new table called ExampleTable.
e The table has two numeric columns (VALUE1 and VALUE2) and one string column (STR1).
e The table is partitioned so that all tuples where VALUE1 < 10 are physically stored in a
different filegroup from those tuples where VALUE1 >= 10.

19. Execute the statements above.

IST/DEI Page 2 of 7

ADSI

20.

21.

22.

23.

24,

25.

26.

27.

28.

In Object Explorer, expand ExampleDB and then Tables. Check that the ExampleTable table has
been created.
Note: Remember that, when creating a database table, if a schema is not specified, the default
schema is dbo.

Open another query window and write the following code:

USE ExampleDB;

INSERT INTO ExampleTable VALUES (8, 40, 'C
INSERT INTO ExampleTable VALUES (8, 20, 'A’
INSERT INTO ExampleTable VALUES (9, 30, 'B
INSERT INTO ExampleTable VALUES (9, 40, 'C
INSERT INTO ExampleTable VALUES (10, 30, 'B
INSERT INTO ExampleTable VALUES (10, 40, 'C
INSERT INTO ExampleTable VALUES (11, 20, 'A’
INSERT INTO ExampleTable VALUES (11, 40, 'C
INSERT INTO ExampleTable VALUES (12, 20, 'A

Before executing the code, answer the following question:
e Which records will end up in which data files?

Execute the statements above.

Open a new query window and write the following code:

SELECT fg.name, p.rows
FROM . AS p,
. AS dds,
. AS fg
WHERE p.object_id = OBJECT_ID('ExampleTable')
AND p.partition_number = dds.destination_id
AND dds.data_space_id = fg.data_space_id;

Before executing the code, note the following:

e The system view sys.partitions returns a row for each partition of all tables in the database.
(In this case, we want the partitions of ExampleTable only.)

e The system view sys.destination_data_spaces returns a row for each data space destination
of a partition scheme.

e The system view sys.filegroups returns a row for each data space that is a filegroup.

Execute the query above.
Confirm that the results agree with your answer to the question above.

We will now investigate the actual contents of a data file in SQL Server.

For this purpose, it is useful to have these concepts in mind:

e Inside a data file, the fundamental unit of storage is the page. The disk space allocated to a
data file (.mdf or .ndf) in a database is logically divided into pages numbered contiguously
from 0 to N. Disk I/O operations are performed at the page level. That is, SQL Server reads or
writes whole data pages.

e In SQL Server, the page size is 8 KB. This means SQL Server databases have 128 pages per
megabyte. Each page begins with a 96-byte header that is used to store system information

IST/DEI Page 3 of 7

ADSI

29.

30.

about the page. This information includes the page number, page type, the amount of free
space on the page, and an ID of the object that owns the page.

=
Microsoft SQL =
Server Data Page

Page header

L J

Data row 1

v Data row 2
™ Data row 3

Free space

3|21 Row offsets

e Data rows are put on the page serially, starting immediately after the header. A row offset

table starts at the end of the page, and each row offset table contains one entry for each row
on the page. Each row offset entry records how far the first byte of the row is from the start
of the page. Thus, the function of the row offset table is to help SQL Server locate rows on a
page very quickly.

e When SQL Server needs to manage space (allocate new pages, or deallocate existing ones), it
does so in groups of 8. A group of 8 pages is called an extent. An extent is 8 physically
contiguous pages, or 64 KB. This means SQL Server databases have 16 extents per megabyte.

e SQL Server has two types of extents: uniform and mixed. Uniform extents are owned by a
single object; all eight pages in the extent can only be used by the owning object. Mixed
extents are shared by up to 8 objects; each of the eight pages in the extent can be owned by
a different object.

Uniform extent

NN NN NN

tablel tablel tablel tablel tablel tablel tablel tablel

Mixed extent

g g g gp

table? indexl index? table2 table3 index3 table2 table3

e Log files (.Idf) do not contain pages; they contain a series of log records.

Open a new query window and write the following code:

SELECT partition_id, allocated_page_page_id

FROM . (db_id('ExampleDB'),
object_id('ExampleTable'),
NULL, NULL, 'DETAILED')

WHERE page_type_desc = 'DATA_PAGE';

Before executing the code, note the following:

e The system function sys.dm_db_database_page_allocations provides information about the
pages that belong to a particular database object (in this case, ExampleTable).

e The type of pages that we are interest in is data pages (more on this later).

IST/DEI Page 4 of 7

ADSI

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Execute the statement above, and take note of the page IDs.
Note: In our case there are two partitions, and the page ID might happen to be the same in each
of those partitions.

In the same query window, write the following code:

SELECT p.partition_number, df.file_id, df.physical_name
FROM . AS p,
AS dds,
. AS df
WHERE p.object_id = OBJECT_ID('ExampleTable')
AND p.partition_number = dds.destination_id
AND dds.data_space_id = df.data_space_id;

Before executing the code, note the following:

e The system view sys.partitions returns a row for each partition of all the tables and indexes
in the database (in this case, we want the partitions of ExampleTable only).

e The system view sys.destination_data_spaces returns a row for each data space destination
of each partition scheme.

e The system view sys.database_files indicates the data file that corresponds to each data
space.

Execute the statement above (only the statement above, by highlighting the code and pressing
Execute).

Take note of the file IDs that correspond to each partition.
Note: In our case, each partition is in a different file, and the file ID identifies each of those

physical files.

In the same query window, write the following commands:

DBCC TRACEON(3604);
DBCC PAGE('ExampleDB', 3, 8, 1);

Before executing these commands, note the following:

e DBCC (database console commands) are special SQL Server commands used for database
administration, maintenance and troubleshooting.

e The first command above configures a trace flag to redirect the output of DBCC commands to
the results window.

e The second command allows us to inspect the actual contents of a given data page. The first
parameter is the database, the second is the file ID, the third is the page ID and the last is a
print option that can be changed from 0 to 3 to provide more detailed information.

e In this case, our file ID is 3 and our page ID is 8. You should replace these values with the file
ID and the page ID that you have obtained earlier for partition 1.

Execute the commands above (only the commands above, by highlighting the code and pressing
Execute).

Check that there are 4 records in this page and these are the ones ending with ‘C’, ‘A’, ‘B’, ‘C’.

In the same query window, write the following code:

IST/DEI Page 5 of 7

ADSI

| DBCC PAGE('ExampleDB', 4, 8, 1);

41. Before executing this command, note the following:
e In this case, our file ID is 4 and our page ID is 8. You should replace these values with the file
ID and the page ID that you have obtained earlier for partition 2.

42. Execute the command above (only the commands above, by highlighting the code and pressing
Execute).

43. Check that there are 5 records in this page and these are the ones ending with ‘B’, ‘C’, ‘A’, ‘'C’, ‘A’.

44. Open a new query window and write the following code:

USE ExampleDB;

SET STATISTICS IO ON;

SELECT * FROM ExampleTable;

45. Before executing this code, note the following:
e The command SET STATISTICS 10 ON turns on statistics about the amount of disk activity
generated by queries.
e The query retrieves all records from ExampleTable.

46. Execute the statements above, and the contents of ExampleTable will appear in the Results tab.

47. Switch to the Messages tab, and note the following:
e The scan count is 2 because there are two partitions to retrieve data from (which requires
two seek/scan operations).
e The number of logical reads is 2 because there are two data pages to retrieve (one data page
in each partition; it could be larger if there were more data pages in each partition).
e The number of physical reads is O because the data pages did not have to be read from disk
(they were already in memory).

48. In the toolbar, press the button Include Actual Execution Plan (the button will remain pressed).
Note: If you cannot find it in the toolbar, the same option is available in the Query menu.

49. Highlight the query (only the query) and press Execute:

SELECT * FROM ExampleTable;

50. Switch to the Execution plan tab, and check that the system is performing a Table Scan.

51. Hover the mouse (or click) over the Table Scan, and a large tooltip will appear.

52. Check the number of rows, the partition count, and the object that the system is operating on.
53. Imagine that you insert many more record in this table. Then:

e As the table grows, more pages are allocated in the data file. As previously explained, new
pages are allocated in groups of 8, called extents.

IST/DEI Page 6 of 7

ADSI

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

e As the file grows, SQL Server needs to know which extents contain pages of a given object.
For this purpose, SQL Server uses a special type of page, called IAM page (for Index Allocation
Map, but not to be confused with database indexes).

e Internally, an IAM page contains a bitmap where each bit refers to an extent in the file, and
the bit value (1 or 0) indicates whether the extent has been allocated to the object or not.

Open a new query window and write the following code:

SELECT partition_id, allocated_page_page_id

FROM . (db_id("ExampleDB'),
object_id('ExampleTable'),
NULL, NULL, 'DETAILED')

WHERE page_type_desc = 'IAM_PAGE';

Before executing the code, note the following:

e The system function sys.dm_db_database_page_allocations provides information about the
pages that belong to a particular database object (in this case, ExampleTable).

e The type of page that we are interest now is IAM pages.

Execute the statement above, and you will notice that each partition has its own IAM page.
Note: An IAM page can cover about 4 GB of data, so the table would have to grow considerably

before another IAM page needs to be created.

Take note of the page IDs for those IAM pages.
Note: The file IDs for those partitions will be the same as before.

In the same query window, write the following commands:

DBCC TRACEON(3604);
DBCC PAGE('ExampleDB', 3, 16, 1);

Before executing these commands, note the following:
e In this case, our file ID is 3 and our page ID is 16. You may have to replace these values with
the correct file ID and page ID that you have obtained earlier.

Execute the commands above, and note that the IAM page contains two records:

e The first record (shorter) is an IAM header with specific information about this IAM page,
such as a sequence number (for IAM pages), the starting extent of the range of extents
mapped by this IAM page, and single page allocations in mixed extents, if any.

e The second record (longer) is the actual bitmap that indicates which extents have been
allocated to the object in the same partition where this IAM page is located. Given the small
number of records that we are working with, you will notice that most of this bitmap is filled
with zeros, i.e. very few extents have been allocated to this table.

Confirm that the scenario is very similar for the IAM page in the other partition.
In Object Explorer, right-click the ExampleDB database, and select Delete.
In the Delete Object window, check the option Close existing connections and press OK.

The ExampleDB database has been dropped. You can close SQL Server Management Studio.

IST/DEI Page 7 of 7

